Search for new physics via the photo-production of tau leptons

Matthew T. Nickel

Standard Model

$$\begin{aligned} \mathcal{J} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{J} + h.c. \\ &+ \mathcal{J}_{ij} \mathcal{J}_{j} \mathcal{P} + h.c. \\ &+ |D_{\mu} \mathcal{P}|^{2} - V(\mathcal{O}) \end{aligned}$$

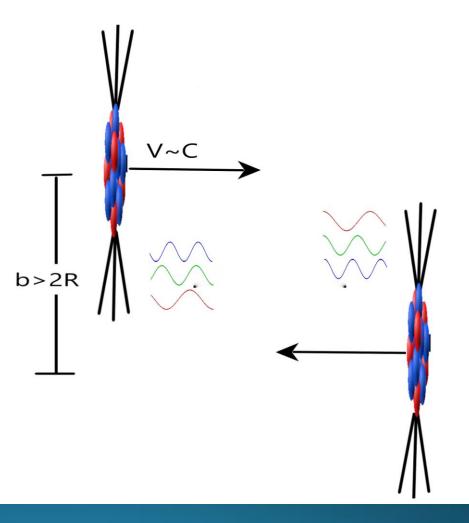
Standard Model of Elementary Particles three generations of matter interactions / force carriers (fermions) (bosons) Ш III ≃2.2 MeV/c² ~1.28 GeV/c2 ≃173.1 GeV/c² ≃124.97 GeV/c² mass 0 2/3 2/3 charge 2/3 0 Η С t q u 1/2 1/2 1 0 1/2 spin up charm top gluon higgs S ≃4.7 MeV/c² ≈96 MeV/c² ≃4.18 GeV/c² 0 RK -1/3 -1/3 -1/3 0 S b V d 1/2 1/2 1/2 **IN** S bottom photon down strange m Ľ ≃0.511 MeV/c² ≃105.66 MeV/c² ≃1.7768 GeV/c² ~91.19 GeV/c2 CALAI BOSONS 0 $^{-1}$ -1 -1 Ζ е μ τ 1/2 1 1/2 1/2 electron Z boson tau muon S S PTON <1.0 eV/c² <0.17 MeV/c² <18.2 MeV/c² ≈80.39 GeV/c² BO ш 0 0 0 ±1 **D** v_{τ} R Yu W Ve 1/2 1/2 1/2 2 **ح** 0 electron muon tau ш W boson 5 U neutrino neutrino neutrino

Almost all fundamental interactions described by these

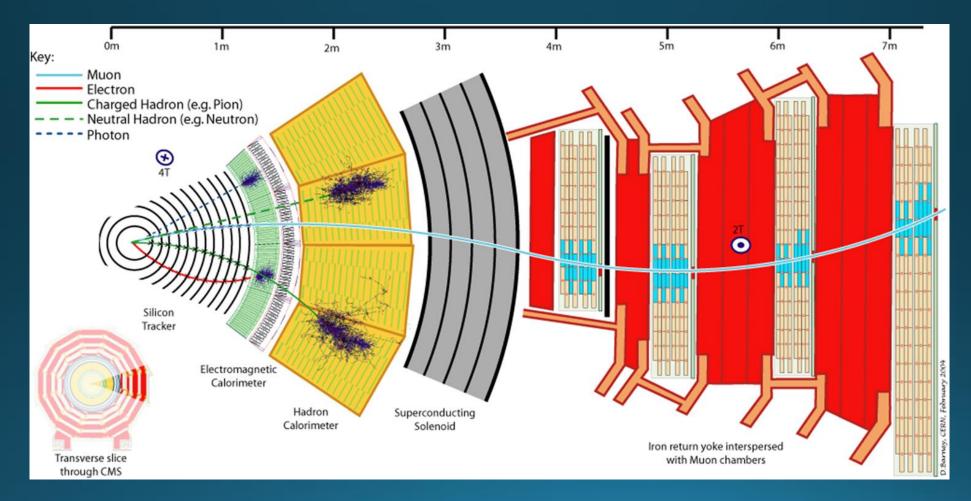
Issues in The Standard Model

- Standard Model has been extremely successful in describing all current collider data
- There have been a few measurements that are in tension with the standard model
- Most notably the anomalous magnetic moment of the muon a_{μ}
- If discrepancy of a_{μ} is due to new physics, then a_{τ} would be 280 times more sensitive to NP due to increased mass

Anomalous Magnetic Moment of Leptons


$$\overrightarrow{\mu_l} = g_l \left(\frac{q}{2m}\right) \vec{S}$$

$$a_l = (g_l - 2)/2$$


- Anomalous Magnetic Moment of electron a_e is one of the most precise measurements in SM
- Both Theory and Experiment are measured less than 1 part per billion and agree.
- a_{μ} has 3.7 σ discrepancy between theory and experiment
- a_{τ} can be measured through photo-production cross-section

Ultra Peripheral Collisions

Photon Energy	~γħc/R	178 GeV
Max p _T	~ħc/R	30 MeV
Photon Rates	$\sim Z^4$	45 M times pp flux

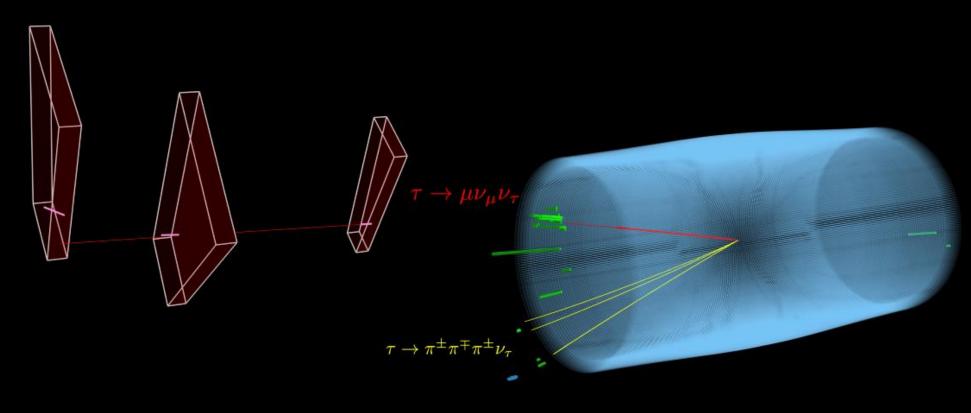
Compact Muon Solenoid

https://cds.cern.ch/record/2270046/plots

6

We propose measuring the cross section of the process $\gamma\gamma \rightarrow \tau \tau$ using the heavy ion data from the CMS experiment at the LHC.

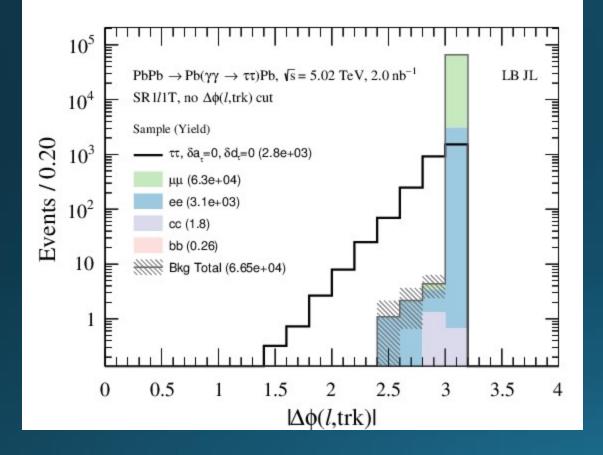
Tau decays

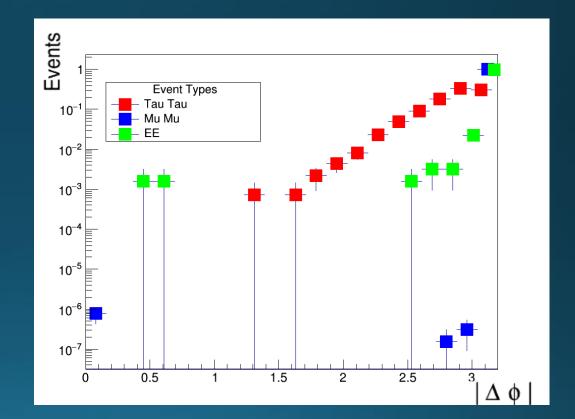

		au Decay Mode	Branching Fraction (%)				
Leptonic		$\tau^{\pm} \rightarrow e^{\pm} + \overline{\nu}_e + \nu_{\tau}$	17.84 ± 0.04				
		$\tau^{\pm} \rightarrow \mu^{\pm} + \overline{\nu}_{\mu} + \nu_{\tau}$	17.41 ± 0.04				
Hadronic	One-prong	$\tau^{\pm} \to \pi^{\pm} + (\geq 0 \ \pi^0) + \nu_{\tau}$	49.46 ± 0.10				
		$\tau^{\pm} \rightarrow \pi^{\pm} + \nu_{\tau}$	10.83 ± 0.06				
		$\tau^{\pm} \rightarrow \rho^{\pm} (\rightarrow \pi^{\pm} + \pi^0) + \nu_{\tau}$	25.52 ± 0.09				
		$\tau^{\pm} \rightarrow a_1 (\rightarrow \pi^{\pm} + 2\pi^0) + \nu_{\tau}$	9.30 ± 0.11				
		$\tau^{\pm} \rightarrow \pi^{\pm} + 3\pi^0 + \nu_{\tau}$	1.05 ± 0.07				
		$\tau^{\pm} \to h^{\pm} + 4\pi^0 + \nu_{\tau}$	0.11 ± 0.04				
Hadronic	Three-prong	$\tau^{\pm} \rightarrow \pi^{\pm} + \pi^{\mp} + \pi^{\pm} + (\geq 0\pi^0) + \nu_{\tau}$	14.57 ± 0.07				
		$ au^{\pm} ightarrow \pi^{\pm} + \pi^{\mp} + \pi^{\pm} + u_{ au}$	8.99 ± 0.06				
		$\tau^{\pm} \rightarrow \pi^{\pm} + \pi^{\mp} + \pi^{\pm} + \pi^{0} + \nu_{\tau}$	2.70 ± 0.08				

https://cds.cern.ch/record/2306444/files/CERN-THESIS-2013-465.pdf

Our Signal

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-25 02:25:02.462080 GMT Run / Event / LS: 327219 / 171630155 / 356

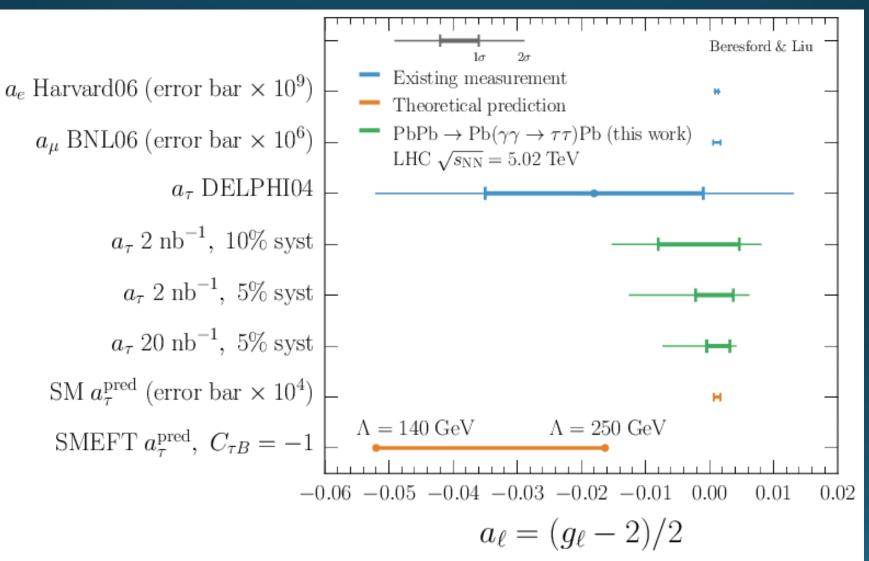



Proposed selection cuts

Requirement	au au (0,0)	au au (0.005,0) $ au au$	(-0.01, 0)	$\mu\mu$	ee	bb	cc	ss	uu	dd
1 lepton + 1 track analysis (SR1l1T)										
$\overline{\sigma imes \mathcal{L}}$	1139800	1195060	1056400	844080	844080	2999	604080	37754	604080	37754
$\sigma imes \mathcal{L} imes \epsilon_{ ext{filter}}$	241140	253920	226300	844080	844080	2999	604080	37754	604080	37754
1ℓ plus 1 track	20492.2	21619.3	19348.4	263443	3299.3	5.4	2905.0	0.3	5.4	0.2
$p_{\rm T}^{e/\mu} > 4.5/3 \text{ GeV}, \eta^{e/\mu} < 2.5/2.4$	3659.9	3882.7	3582.8	79043	3118.9	1.1	4.8	0.0	0.0	0.0
2 tracks, $p_{\rm T}^{\rm trk} > 0.5 {\rm GeV}, \eta^{\rm trk} < 2.5$	3324.5	3535.9	3256.9	78973	3117.8	1.0	3.0	0.0	0.0	0.0
$ \Delta \phi(\ell, \text{trk}) < 3$	1519.7	1605.7	1468.3	0.9	5.3	0.7	1.8	0.0	0.0	0.0
$m_{\ell, \text{trk}} \not\in \{[3, 3.2], [9, 11]\} \text{ GeV}$	1275.1	1353.6	1242.3	0.9	5.3	0.2	1.2	0.0	0.0	0.0
$p_{ m T}^\ell \leq 6.0~{ m GeV}$	1197.7	1262.3	1154.7	0.9	0.0	0.2	1.2	0.0	0.0	0.0
$p_{ m T}^\ell > 6.0~{ m GeV}$	77.3	91.3	87.6	0.0	5.3	0.0	0.0	0.0	0.0	0.0

https://arxiv.org/abs/1908.05180

Acoplanarity of taus



Normalized to Unity

https://arxiv.org/abs/1908.05180

11

We improve a_{τ} measurement

Summary

- Standard Model is extremely accurate
- Only a few experiments are in tension with SM... a_{μ}
- $a_{ au}$ is an even better test of the Standard Model
- This measurement is difficult but manageable using UPC
- Current Progress is promising but still much more work to do

Our Wonderful Group

Michael Murray, Georgios Krintiras, Juan Marquez, Muhanmmad Alibordi, Stefanos Leontsinis, Yougson Kimm, Yuta Takahashi, Prafulla Behera, Ruchi Chudasama, Arash Jofrehei, and Ben Kilminster

