

A Search for Exoplanets orbiting Post-Common-Envelope Binaries using Eclipse Timing Variations

Presenter: Xinyu Mai

Is this period variation an evidence of exoplanet?

Common Envelope Evolution

Timing Variation Mechanism

- Other possible Causes of Period Variation:
 - Mass transfer
 - Applegate's Mechanism?
 - apsidal motion?
 - Light travel time effect?

A Model for Timing Variations

$$T(E) = T_0 + P_0 E$$

$$T(E) = T_0 + P_0 E$$
 $+ \frac{1}{2} \frac{dP}{dt} P_0 E^2$

$$+\sum_{i} au_{i}$$

Linear Ephemeris

Quadratic Ephemeris (Apsidal Motion?)

Light Travel Time(LTT) (Planets)

$$\tau_i = \frac{K_i}{\sqrt{1 - [e_i cos(\omega_i)]^2}}.$$

Number of Planets: i = 1,2,3...

$$i = 1,2,3...$$

$$\left[\frac{1-e_i^2}{1+e_i cos(v_i)}sin(v_i+\omega_i)+e_i sin(\omega_i)\right]$$

(Irwin 1959)

HS2231+2441

HS0705+6700: quadratic + 3 planets model

Best-fit parameters for the quadratic plus three planet model

Parameter	Fitted Values		Unit	
	Inner I	Binary		
T_0	2451822.762013		BJD	
P_0	0.095646609		day	
$\frac{dP}{dt}$	$4.97(12) \cdot 10^{-12}$		s/s	
	Substellar	component param	eters	
	LTT 1	LTT 2	LLT3	units
e	$0.0^{+0.03}_{-0.0}$	$0.01^{+0.02}_{-0.01}$	$0.05^{+0.03}_{-0.03}$	
asin(i)	$3.26^{+0.02}_{-0.26}$	$8.36^{+0.44}_{-0.15}$	$20.27^{+1.13}_{-0.74}$	AU
ω	$3.69^{+3.37}_{-0.1}$	$3.86^{+0.23}_{-0.08}$	$6.22^{+0.47}_{-0.47}$	rad
Min. Mass	$20.27^{+0.18}_{-0.19}$	$21.30^{+0.73}_{-0.71}$	$2.44^{+0.59}_{-0.70}$	$M_{\rm J}$

Lifetime of PCEBs ~ 100 million years!

HW Vir: 4 planets model + quadratic term

Summary

•HS2231+2441

•HS0705+6700

•HW Vir

No significant period variation

Stable three Planets Solution!

Excellent fit but unstable solution

Key questions:

- How well determined are the fitted parameters with degeneracy
- Other plausible hypothesis: Lanza-Applegate Mechanism?

Thank you!

Algorithm to Find Parameters of Chi Square Minima

1 Planet Solution:

Grid Search + Downhill simplex

2 & 3 Planet Solutions:

Downhill simplex

Key Breakthrough:

- Implement Levenberg–Marquardt nonlinear least-squares algorithm (LMFIT) with Hill criterion
- Use emcee minimizer to determine posterior distribution of the fitted parameters, characterize the uncertainties

Chi square surface

2000

2005

Year

2010

2015

2020

1985

1990

1995

Best 4 planets fit Unstable right away

```
1.88 Mjup
                   2.75 AU
                                 0.00
                                        343 deg
     4.01 Mjup
                   3.88 AU
                                        205 deg
    12.28 Mjup
                   7.31 AU
                                 0.21
                                        167 deg
     6.11 Mjup
                  24.66 AU
                                 0.00
                                        345 deg
Hill parameters
1-2 = 0.80
1-3 = 1.25
2-3 = 0.81
1-4 = 3.39
2-4 = 2.85
3-4 = 1.38
```

```
BJD0_0 = 2450280.28596 * day
P_binary_0 = 0.116719519 * day
Pdot_0 = -1.39e-11
```