

Performance of Precision Timing Sensors for the Compact Muon Solenoid Experiment

Margaret Lazarovits On behalf of the CMS Experiment University of Kansas

23 February 2021

Physics at the LHC

LHCb

CERN Prévessin

ATLAS

CERN Meyrin

Lazarovits, Jan. 2021

ALICE

Large Hadron Collider (LHC)

LHC 27 km

SUISSE

FRANCE

CMS

KU PALOOZA

ment at the LHC, CERN ed: 1010-Oct-14 09:56:16.733952 GMT /LS: 2831711/ 142530805 / 254

Pileup Increase with LHC Upgrade

Beam line axis

~10 cm

40 million bunch crossings/sec with 100-200 interactions/crossing

KU Resolving Pileup With Precision Timing

Lazarovits, Feb. 2021

Vertices that overlap in 3D are clearly separated in 4D

Barrel Timing Layer (BTL)

Endcap Timing Layer (ETL):

Silicon low gain avalanche

<u>detectors (LGADs)</u>

Fermilab particle accelerator, Batavia, IL

THE UNIVERSITY OF Silicon LGAD Sensor Requirements

□ Time resolution requirement: 30-40 picoseconds

- □ Efficiency requirement: ~100% uniformly throughout the sensor
- **□** Radiation tolerance

KU PALOOZA

Sensor Requirement: Timing Resolution

Summary

Lazarovits, Feb. 2021

- CMS detector at the Large Hadron Collider entering upgrade phase in the near future
 - Comes with increase in pileup
- Precision Timing @ CMS helps to reduce effects of pileup
 - Implemented with MIP Timing Detector
- MTD concluding R&D phase
 - Fermilab test beam: ETL sensors performance meet expectations
 - More tests @ KU will begin soon!

Backup

KU PALOOZA

Standard Model: building blocks of the universe

Goals of Particle Physics

Standard Model (SM) measurements

Beyond Standard Model (BSM) aka new physics searches

High Luminosity LHC

KU PALOOZA

Lazarovits, Jan. 2021

What does improved pileup resolution ANSAS mean?

- Improved pileup resolution (CMS) LHCC-2019-003)
- of pileup tracks/signal PV Better tagging capabilities for bjets
 - Improvement for lepton isolation

KU PALOOZA

 Increased effective luminosity for rarer signals/Higgs Program

#

Lazarovits, Feb. 2021

KU PALOOZA

KU THE UNIVERSITY OF KANSAS What else can we see with the MTD?

- Improved pileup resolution (<u>CMS</u> <u>LHCC-2019-003</u>)
 - B-tagging + lepton isolation improvement
 - Increased effective luminosity for rarer signals/Higgs Program
- Additional physics capabilities
 - Heavy ion studies/low pT hadron studies
 - LLP studies with timing (arXiv:1903.05825v2)

KU ANSAS Low Gain Avalanche Detectors

- Silicon doped with boron/ gallium (gain layer)
- Gain layer creates high electric field
- Minimum ionizing particles (MIPs) are able to leave a readable signal

MTD Structural Overview: Endcap Timing Layer (ETL)

Lazarovits, Feb. 2021

- Make distribution of these time differences (Δt)
- ullet Standard deviation of distribution is time resolution σ_t

Other values of interest:

Most probable value of amplitude distribution

• Efficiency of sensor

Lazarovits, Feb. 2021

ETL LGAD Studies: Interpad Distance

HPK 4X4 8e14 625V [FNAL board] - Efficiency Pad0+Pad2 - 87 \pm 10 μ m

Check "dead area" between pads

LGAD Sensors

HPK 4x4 LGAD array

FBK 2x8 LGAD array

ETL LGAD Studies: Sensor Uniformity - Timing Res.

KU PALOOZA

April 2019 Test Beam Results

KU PALOOZA

Lazarovits, Jan. 2021

LLP Mass Calculation

 $S = \Delta X$ $R = \Delta t$

or one LLP $M_{UP} = \overline{B}_{UP,T} \cdot (\overline{F}_{T} + \overline{P}_{Z,T})$

Outline

Large Hadron Collider (LHC) and Compact Muon Solenoid (CMS)

Precision Timing Upgrade and the MIP Timing Detector (MTD)

Endcap Timing Layer (ETL) Sensors - Silicon Low Gain Avalanche Detectors

Sensor Performance Requirements and Results

Summary

- Particle Physicists study the building blocks of our universe with
 - particle colliders: Large Hadron Collider, and
 - detectors: Compact Muon Solenoid
- LHC and CMS will undergo an upgrade for more particle collisions to see more physics, comes with more noise (pileup)
- Addition of precision timing hardware (MTD) will reduce effects of pileup
- MTD Endcap Timing Layer sensors meet expectations
 - Fermilab results: time resolution, efficiency, radiation tolerance
 - Upcoming KU studies: mechanical/electrical/thermal robustness