What is the Problem? 00	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion 000	References	Extra 00

Explroing Quantum Algorithms for Combinatorial Problems at Colliders

Jacob Scott

March 25, 2023

What is the Problem? ●○	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion 000	References	Extra 00
The Probler						

 $2 \rightarrow 2$ Collision

Figure 1: Not a frog seen from above. Or Salad Fingers From 2111.07806 [1]

- A binary classification problem
- There are $\mathcal{O}(2^n)$ possible classifications.
- What happens if $n \ge 1000$ or so?

What is the Problem? ○●	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion 000	References	Extra 00
Example: pp	$t \to t \bar{t}$					

Two dominant decay modes for t:

•
$$t \to W^+ b \to \ell \nu_\ell b$$

- ✓ Cleaner only one jet
- $\times~$ Missing momentum

•
$$t \to W^+ b \to q\bar{q}b$$

- \times Messier 3 quarks
- ✓ All momentum accounted for

We will look at this decay

Two dominant decay modes for t:

•
$$t \to W^+ b \to \ell \nu_\ell b$$

- ✓ Cleaner only one jet
- \times Missing momentum

•
$$t \to W^+ b \to q\bar{q}b$$

- × Messier 3 quarks
- $\checkmark\,$ All momentum accounted for

- - A qubit is a two-dimensional vector:
 - Describe it as two basis vectors:

pr:
$$\binom{\alpha}{\beta}$$

 $\alpha \binom{1}{0} + \beta \binom{0}{1}$

 $\langle \alpha \rangle$

- Use fancy QM notation: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$
 - Classically, α and β must be 1 or 0.

- A qubit is a two-dimensional vector:
- Describe it as two basis vectors:

or:
$$\binom{\alpha}{\beta}$$

 $\alpha \binom{1}{0} + \beta \binom{0}{1}$

 $\langle \alpha \rangle$

• Use fancy QM notation: $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$

- Classically, α and β must be 1 or 0.

- You change vector with matrices.
- Quantum 1-qubit "gate" is a 2x2 matrix:

$$U \ket{\psi} = \begin{pmatrix} a & b \\ -b^* & a^* \end{pmatrix} \begin{pmatrix} lpha \\ eta \end{pmatrix} = {\sf new \ state!}$$

What is the Problem?	Quantum Circuits ○●○	Game Plan 00000000	Results 0	Conclusion 000	References	Extra 00
Two Qubits						

Two qubits are a four-dimensional vector:

$$|\psi\rangle = \alpha |00\rangle + \beta |01\rangle + \gamma |10\rangle + \delta |11\rangle$$
$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \ |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \ |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \ |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

Variational Quantum Algorithms (VQA)

- **1** Create a cost function $C(\boldsymbol{\theta})$ that you want to minimize,
 - (In a physics context, think of the Hamiltonian, action, entropy, etc.)
- 2 And parameterized quantum circuit ansatz that produces state $|\theta\rangle$ to find $\langle \theta | C | \theta \rangle$.
- **3** A classical optimizer changes values of θ to lower cost function.
- 4 Repeat until the minimum is found

Just like a neural network but the network is replaced by a quantum circuit

What is the Problem?	Quantum Circuits	Game Plan ○●○○○○○○	Results 0	Conclusion 000	References	Extra 00

What can we minimize for $t\bar{t}$?

Mass Difference:

$$H_P = (P_1^2 - P_2^2)^2$$

What can we minimize for $t\bar{t}$?

Mass Difference:

$$H_P = (P_1^2 - P_2^2)^2$$

where
$$P_1 = \sum$$
(particles' p assigned to t)
 $P_2 = \sum$ (particles' p assigned to \bar{t})

4-momentum squared equals mass squared:

$$E^2 = \mathbf{p}^2 + m^2 \Longrightarrow m^2 = E^2 - \mathbf{p}^2 = p^\mu p_\mu = p^2$$

Quantum Approximation Optimization Algorithm (QAOA)

- **1** Create ansatz from classical H_P : A Hamiltonian operator \hat{H}_P .
- 2 Exploit the adiabatic theorem to evolve to ground state of \hat{H}_P : $|\psi\rangle$.
- **3** Take expectation value: $\langle \psi | \hat{H}_P | \psi \rangle$.
- **④** Feed into an optimizer to find updated parameters and repeat.

Quantum Approximation Optimization Algorithm (QAOA)

- **1** Create ansatz from classical H_P : A Hamiltonian operator \hat{H}_P .
- 2 Exploit the adiabatic theorem to evolve to ground state of \hat{H}_P : $|\psi\rangle$.
- **3** Take expectation value: $\langle \psi | \hat{H}_P | \psi \rangle$.
- **④** Feed into an optimizer to find updated parameters and repeat.

Wait... what parameters?

What is the Problem?	Quantum Circuits	Game Plan 000●0000	Results 0	Conclusion 000	References	Extra 00
Adiabatic Th	ieorem					

Exploiting (and enjoying) the Adiabatic theorem:

$$\hat{H}(t) = \left(1 - \frac{t}{T}\right) \hat{H}_M + \frac{t}{T} \hat{H}_P$$

 $H = H_M$ at early times and $H = H_P$ at late times.

Exploiting (and enjoying) the Adiabatic theorem:

$$\hat{H}(t) = \left(1 - \frac{t}{T}\right) \hat{H}_M + \frac{t}{T} \hat{H}_P$$

 $H = H_M$ at early times and $H = H_P$ at late times.

Statment: Ground state of $\hat{H}_M \Longrightarrow$ ground state of \hat{H}_P

Exploiting (and enjoying) the Adiabatic theorem:

$$\hat{H}(t) = \left(1 - \frac{t}{T}\right) \hat{H}_M + \frac{t}{T} \hat{H}_P$$

$$H = H_M \text{ at early times and } H = H_H \text{ at late times.}$$
Statment: Ground state of $H_M \Longrightarrow$ ground state of \hat{H}_P
Simple and solvable
Ground state is your answer!
Let's say for no particular reason $\hat{H}_M = \sum_{i=1}^n \sigma_i^x$

What is the Problem?	Quantum Circuits	Game Plan 0000€000	Results 0	Conclusion 000	References	Extra 00
Plan of Acti	on					

Schrödinger equation:

$$\hat{H} \left| \psi \right\rangle = i \frac{\partial}{\partial t} \left| \psi \right\rangle \implies \left| \psi \right\rangle = e^{-i\hat{H}t} \left| \psi_0 \right\rangle$$

If t = T, then $|\psi_0\rangle$ is the ground state of \hat{H}_M , then $|\psi\rangle$ is the ground state of \hat{H}_P .

What is the Problem?	Quantum Circuits	Game Plan 0000€000	Results 0	Conclusion 000	References	Extra 00
Plan of Acti	on					

Schrödinger equation:

$$\hat{H} \left| \psi \right\rangle = i \frac{\partial}{\partial t} \left| \psi \right\rangle \implies \left| \psi \right\rangle = e^{-i\hat{H}t} \left| \psi_0 \right\rangle$$

If t = T, then $|\psi_0\rangle$ is the ground state of \hat{H}_M , then $|\psi\rangle$ is the ground state of \hat{H}_P . But how?

What is the Problem?	Quantum Circuits	Game Plan 00000€00	Results 0	Conclusion 000	References	Extra 00

Plan of Action

What is the Problem?	Quantum Circuits 000	Game Plan 000000€0	Results O	Conclusion 000	References	Extra 00
Plan of Acti	on					

We did it!

$$|\boldsymbol{\gamma},\boldsymbol{\beta}
angle = \prod_{j=1}^{p} \exp\left[-i\beta_{j}\hat{H}_{M}\right] \exp\left[-i\gamma_{j}\hat{H}_{P}\right]|+
angle$$

What is the Problem?	Quantum Circuits 000	Game Plan 000000●0	Results 0	Conclusion 000	References	Extra 00
Plan of Acti	on					

$$|\boldsymbol{\gamma},\boldsymbol{\beta}
angle = \prod_{j=1}^{p} \exp\left[-i\beta_{j}\hat{H}_{M}\right] \exp\left[-i\gamma_{j}\hat{H}_{P}\right]|+
angle$$

Small steps of time-evolutions...

What is the Problem?	Quantum Circuits 000	Game Plan 000000●0	Results 0	Conclusion 000	References	Extra 00
Plan of Acti	on					

$$|\boldsymbol{\gamma},\boldsymbol{\beta}
angle = \prod_{j=1}^{p} \exp\left[-i\beta_{j}\hat{H}_{M}\right] \exp\left[-i\gamma_{j}\hat{H}_{P}\right]|+
angle$$

Small steps of time-evolutions...

•
$$\exp\left[-ieta_j\hat{H}_M
ight]$$
: An x rotation of all n qubits separately

What is the Problem?	Quantum Circuits	Game Plan 000000€0	Results 0	Conclusion 000	References	Extra 00
Plan of Actio	on					

$$|\boldsymbol{\gamma},\boldsymbol{\beta}\rangle = \prod_{j=1}^{p} \exp\left[-i\beta_{j}\hat{H}_{M}\right] \exp\left[-i\gamma_{j}\hat{H}_{P}\right]|+
angle$$

Small steps of time-evolutions...

• $\exp\left[-i\beta_{j}\hat{H}_{M}
ight]$: An x rotation of all n qubits separately

$$H_P = (P_1^2 - P_2^2)^2 = \sum J_{ij} s_i s_j \Longrightarrow \hat{H}_P = \sum J_{ij} \sigma_i^z \sigma_j^z$$

This is just the Ising model sans an external field

What is the Problem?	Quantum Circuits 000	Game Plan 000000●0	Results 0	Conclusion 000	References	Extra 00
Plan of Acti	on					

$$|\boldsymbol{\gamma},\boldsymbol{\beta}
angle = \prod_{j=1}^{p} \exp\left[-i\beta_{j}\hat{H}_{M}\right] \exp\left[-i\gamma_{j}\hat{H}_{P}\right]|+
angle$$

Small steps of time-evolutions...

•
$$\exp\left[-i\beta_{j}\hat{H}_{M}
ight]$$
: An x rotation of all n qubits separately

•
$$\exp\left[-i\gamma_{j}\hat{H}_{P}
ight]$$
: A zz rotation on all qubit pairs

What is the Problem?	Quantum Circuits	Game Plan 0000000●	Results 0	Conclusion 000	References	Extra 00
The Circuit						

For 3 qubits and a depth of p = 1:

Then feed $\langle \gamma_1, \beta_1 | \hat{H}_P | \gamma_1, \beta_1 \rangle$ into a classical optimizer and repeat.

What is the Problem?	Quantum Circuits	Game Plan 00000000	Results ●	Conclusion 000	References	Extra 00
Results						

Depth of p = 1:

What is the Problem?	Quantum Circuits	Game Plan 00000000	Results ●	Conclusion 000	References	Extra 00
Results						

Depth of p = 5:

What is the Problem?	Quantum Circuits 000	Game Plan 00000000	Results ●	Conclusion 000	References	Extra 00
Results						

Depth of p = 10:

Pros

- Finds the global minimum $(as p \rightarrow \infty)$
- Scales less than exponentially
- QC is very popular things will only get better

<u>Cons</u>

- Can get stuck in local minima
- May need large p
- Quantum advantage only for large *n*
- Gates are noisy NISQ era for a reason

What is the Problem?	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion ○●○	References	Extra 00

Future

What is the Problem?	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion ○●○	References	Extra 00
Future						

• Noise go down, qubits go up.

What is the Problem?	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion ○●○	References	Extra 00
Future						

- Noise go down, qubits go up.
- But also QAOA isn't the only contender in town, e.g. Feedback-Based ALgorithm for Quantum OptimizatioN (FALQON)¹

What is the Problem?	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion 000	References	Extra 00
References						

- Minho Kim et al. Leveraging Quantum Annealer to identify an Event-topology at High Energy Colliders. 2021. arXiv: 2111.07806 [hep-ph].
- [2] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. 2014. arXiv: 1411.4028 [quant-ph].
- [3] Alicia B. Magann et al. "Feedback-Based Quantum Optimization". In: Physical Review Letters 129.25 (Dec. 2022). DOI: 10.1103/physrevlett.129.250502. arXiv: 2103.08619 [quant-ph]. URL: https://doi.org/10.1103%2Fphysrevlett.129.250502.

What is the Problem? 00	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion 000	References	Extra ●0
The Quantu	ım Circuit i	n Detail				

What is the Problem?	Quantum Circuits	Game Plan 00000000	Results 0	Conclusion 000	References	Extra 0●
Deriving the	lsing Mod	ol Form				

Deriving the Ising Model Form

Our Hamiltonian is $H_P = (P_1^2 - P_2^2)^2$ where $P_1 = \sum p_i x_i$ and $P_2 = \sum p_i (1 - x_i)$ where $x_i = 0$ if final particle *i* is assigned to particle 1 and 0 otherwise. Then let $x_i = (1 + s_i)/2$ so $s_i = \pm 1$.

$$P_1^2 + P_2^2 = \frac{1}{4} \sum_{ij} P_{ij}(1+s_i)(1+s_j) - \frac{1}{4} \sum_{ij} P_{ij}(1-s_i)(1-s_j)$$
$$= \frac{1}{4} \sum_{ij} P_{ij}(1+s_is_j+2s_i) - \frac{1}{4} \sum_{ij} P_{ij}(1+s_is_j-2s_i)$$
$$= \sum_{ij} P_{ij}s_i$$

where $P_{ij} = p_i \cdot p_j$ is the dot product of 4-momentum.

Deriving the Ising Model Form

Our Hamiltonian is $H_P = (P_1^2 - P_2^2)^2$ where $P_1 = \sum p_i x_i$ and $P_2 = \sum p_i(1-x_i)$ where $x_i = 0$ if final particle *i* is assigned to particle 1 and 0 otherwise. Then let $x_i = (1 + s_i)/2$ so $s_i = \pm 1$.

$$\begin{split} (P_1^2 + P_2^2)^2 &= \sum_{ijk\ell} P_{ij} P_{k\ell} s_i s_k \\ &= \sum_{ij} J_{ij} s_i s_j \qquad \text{where} \qquad J_{ij} = \sum_{k\ell} P_{ik} P_{j\ell} \end{split}$$

where $P_{ij} = p_i \cdot p_j$ is the dot product of 4-momentum.