Explroing Quantum Algorithms

for Combinatorial Problems at Colliders

Jacob Scott

March 25, 2023

The Problem

$\underline{2 \rightarrow 2}$ Collision

Figure 1: Not a frog seen from above.
From 2111.07806 [1]

- A binary classification problem
- There are $\mathcal{O}\left(2^{n}\right)$ possible classifications.
- What happens if $n \geq 1000$ or so?

Example: $p p \rightarrow t \bar{t}$

Two dominant decay modes for t :

- $t \rightarrow W^{+} b \rightarrow \ell \nu_{\ell} b$
\checkmark Cleaner - only one jet
\times Missing momentum
- $t \rightarrow W^{+} b \rightarrow q \bar{q} b$
\times Messier -3 quarks
\checkmark All momentum accounted for

Example: $p p \rightarrow t \bar{t}$

Two dominant decay modes for t :

- $t \rightarrow W^{+} b \rightarrow \ell \nu_{\ell} b$
\checkmark Cleaner - only one jet
\times Missing momentum
- $t \rightarrow W^{+} b \rightarrow q \bar{q} b$
\times Messier - 3 quarks
\checkmark All momentum accounted for

What are they?

- A qubit is a two-dimensional vector: $\binom{\alpha}{\beta}$
- Describe it as two basis vectors: $\alpha\binom{1}{0}+\beta\binom{0}{1}$
- Use fancy QM notation: $\quad|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
- Classically, α and β must be 1 or 0 .

What are they?

- A qubit is a two-dimensional vector: $\binom{\alpha}{\beta}$
- Describe it as two basis vectors: $\alpha\binom{1}{0}+\beta\binom{0}{1}$
- Use fancy QM notation: $\quad|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$
- Classically, α and β must be 1 or 0 .
- You change vector with matrices.
- Quantum 1-qubit "gate" is a 2×2 matrix:

$$
U|\psi\rangle=\left(\begin{array}{cc}
a & b \\
-b^{*} & a^{*}
\end{array}\right)\binom{\alpha}{\beta}=\text { new state! }
$$

Two Qubits

Two qubits are a four-dimensional vector:

$$
\begin{gathered}
|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle \\
|00\rangle=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),|01\rangle=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right),|10\rangle=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right),|11\rangle=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

N Qubits

Final State

Variational Quantum Algorithms (VQA)

(1) Create a cost function $C(\boldsymbol{\theta})$ that you want to minimize,

- (In a physics context, think of the Hamiltonian, action, entropy, etc.)
(2) And parameterized quantum circuit ansatz that produces state $|\boldsymbol{\theta}\rangle$ to find $\langle\boldsymbol{\theta}| C|\boldsymbol{\theta}\rangle$.
(3) A classical optimizer changes values of $\boldsymbol{\theta}$ to lower cost function.
(4) Repeat until the minimum is found

What can we minimize for $t \bar{t}$?

Mass Difference:

$$
H_{P}=\left(P_{1}^{2}-P_{2}^{2}\right)^{2}
$$

What can we minimize for $t \bar{t}$?

Mass Difference:

$$
H_{P}=\left(P_{1}^{2}-P_{2}^{2}\right)^{2}
$$

$$
\text { where } \begin{aligned}
P_{1} & =\sum(\text { particles' } p \text { assigned to } t) \\
P_{2} & =\sum(\text { particles' } p \text { assigned to } \bar{t})
\end{aligned}
$$

4-momentum squared equals mass squared:

$$
E^{2}=\mathbf{p}^{2}+m^{2} \Longrightarrow m^{2}=E^{2}-\mathbf{p}^{2}=p^{\mu} p_{\mu}=p^{2}
$$

Quantum Approximation Optimization Algorithm (QAOA)

(1) Create ansatz from classical H_{P} : A Hamiltonian operator \hat{H}_{P}.
(2) Exploit the adiabatic theorem to evolve to ground state of $\hat{H}_{P}:|\psi\rangle$.
(3) Take expectation value: $\langle\psi| \hat{H}_{P}|\psi\rangle$.
(4) Feed into an optimizer to find updated parameters and repeat.

Quantum Approximation Optimization Algorithm (QAOA)

(1) Create ansatz from classical H_{P} : A Hamiltonian operator \hat{H}_{P}.
(2) Exploit the adiabatic theorem to evolve to ground state of $\hat{H}_{P}:|\psi\rangle$.
(3) Take expectation value: $\langle\psi| \hat{H}_{P}|\psi\rangle$.
(4) Feed into an optimizer to find updated parameters and repeat.

Wait... what parameters?

Adiabatic Theorem

Exploiting (and enjoying) the Adiabatic theorem:

$$
\hat{H}(t)=\left(1-\frac{t}{T}\right) \hat{H}_{M}+\frac{t}{T} \hat{H}_{P}
$$

$H=H_{M}$ at early times and $H=H_{P}$ at late times.

Adiabatic Theorem

Exploiting (and enjoying) the Adiabatic theorem:

$$
\hat{H}(t)=\left(1-\frac{t}{T}\right) \hat{H}_{M}+\frac{t}{T} \hat{H}_{P}
$$

$H=H_{M}$ at early times and $H=H_{P}$ at late times.

Statment: Ground state of $\hat{H}_{M} \Longrightarrow$ ground state of \hat{H}_{P}

Adiabatic Theorem

Exploiting (and enjoying) the Adiabatic theorem:

$$
\hat{H}(t)=\left(1-\frac{t}{T}\right)
$$

$H=H_{M}$ at early times and $H=H_{H}$ at late imes.
Statment: Ground state of $H_{M} \Longrightarrow$ groulnd state of \hat{H}_{P}
Simple and solvable

Ground state is your answer!

Let's say for no particular reason $\hat{H}_{M}=\sum_{i=1}^{n} \sigma_{i}^{x}$

Plan of Action

Schrödinger equation:

$$
\hat{H}|\psi\rangle=i \frac{\partial}{\partial t}|\psi\rangle \quad \Longrightarrow \quad|\psi\rangle=e^{-i \hat{H} t}\left|\psi_{0}\right\rangle
$$

If $t=T$, then $\left|\psi_{0}\right\rangle$ is the ground state of \hat{H}_{M}, then $|\psi\rangle$ is the ground state of \hat{H}_{P}.

Plan of Action

Schrödinger equation:

$$
\hat{H}|\psi\rangle=i \frac{\partial}{\partial t}|\psi\rangle \quad \Longrightarrow \quad|\psi\rangle=e^{-i \hat{H} t}\left|\psi_{0}\right\rangle
$$

If $t=T$, then $\left|\psi_{0}\right\rangle$ is the ground state of \hat{H}_{M}, then $|\psi\rangle$ is the ground state of \hat{H}_{P}. But how?

Plan of Action

Plan of Action

We did it!

$$
|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle=\prod_{j=1}^{p} \exp \left[-i \beta_{j} \hat{H}_{M}\right] \exp \left[-i \gamma_{j} \hat{H}_{P}\right]|+\rangle
$$

Plan of Action

We did it! p (discrete) replaces t (continuous)

$$
|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle=\prod_{j=1}^{p} \exp \left[-i \beta_{j} \hat{H}_{M}\right] \exp \left[-i \gamma_{j} \hat{H}_{P}\right]|+\rangle
$$

Small steps of time-evolutions...

Plan of Action

We did it! p (discrete) replaces t (continuous)

$$
|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle=\prod_{j=1}^{p} \exp \left[-i \beta_{j} \hat{H}_{M}\right] \exp \left[-i \gamma_{j} \hat{H}_{P}\right]|+\rangle
$$

Small steps of time-evolutions...

- $\exp \left[-i \beta_{j} \hat{H}_{M}\right]$: An x rotation of all n qubits separately

Plan of Action

We did it! $\quad p$ (discrete) replaces t (continuous)

$$
|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle=\prod_{j=1}^{p} \exp \left[-i \beta_{j} \hat{H}_{M}\right] \exp \left[-i \gamma_{j} \hat{H}_{P}\right]|+\rangle
$$

Small steps of time-evolutions...

- $\exp \left[-i \beta_{j} \hat{H}_{M}\right]$: An x rotation of all n qubits separately

$$
H_{P}=\left(P_{1}^{2}-P_{2}^{2}\right)^{2}=\sum J_{i j} s_{i} s_{j} \Longrightarrow \hat{H}_{P}=\sum J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}
$$

This is just the Ising model sans an external field

Plan of Action

We did it! p (discrete) replaces t (continuous)

$$
|\boldsymbol{\gamma}, \boldsymbol{\beta}\rangle=\prod_{j=1}^{p} \exp \left[-i \beta_{j} \hat{H}_{M}\right] \exp \left[-i \gamma_{j} \hat{H}_{P}\right]|+\rangle
$$

Small steps of time-evolutions...

- $\exp \left[-i \beta_{j} \hat{H}_{M}\right]$: An x rotation of all n qubits separately
- $\exp \left[-i \gamma_{j} \hat{H}_{P}\right]$: A $z z$ rotation on all qubit pairs

The Circuit

For 3 qubits and a depth of $p=1$:

Then feed $\left\langle\gamma_{1}, \beta_{1}\right| \hat{H}_{P}\left|\gamma_{1}, \beta_{1}\right\rangle$ into a classical optimizer and repeat.

Results

Depth of $p=1$:

Results

Depth of $p=5$:

Results

Depth of $p=10$:

Pros \& Cons

Pros

- Finds the global minimum (as $p \rightarrow \infty$)
- Scales less than exponentially
- QC is very popular things will only get better

Cons

- Can get stuck in local minima
- May need large p
- Quantum advantage only for large n
- Gates are noisy - NISQ era for a reason

Future

Future

- Noise go down, qubits go up.

Future

- Noise go down, qubits go up.
- But also QAOA isn't the only contender in town, e.g. Feedback-Based ALgorithm for Quantum OptimizatioN $(\text { FALQON })^{1}$

References

[1] Minho Kim et al. Leveraging Quantum Annealer to identify an Event-topology at High Energy Colliders. 2021. arXiv: 2111.07806 [hep-ph].
[2] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. 2014. arXiv: 1411.4028 [quant-ph].
[3] Alicia B. Magann et al. "Feedback-Based Quantum Optimization". In: Physical Review Letters 129.25 (Dec. 2022). DOI: 10.1103/physrevlett.129.250502. arXiv: 2103.08619 [quant-ph]. URL:
https://doi.org/10.1103\%2Fphysrevlett.129.250502.

The Quantum Circuit in Detail

Deriving the Ising Model Form

Our Hamiltonian is $H_{P}=\left(P_{1}^{2}-P_{2}^{2}\right)^{2}$ where $P_{1}=\sum p_{i} x_{i}$ and $P_{2}=\sum p_{i}\left(1-x_{i}\right)$ where $x_{i}=0$ if final particle i is assigned to particle 1 and 0 otherwise. Then let $x_{i}=\left(1+s_{i}\right) / 2$ so $s_{i}= \pm 1$.

$$
\begin{aligned}
P_{1}^{2}+P_{2}^{2} & =\frac{1}{4} \sum_{i j} P_{i j}\left(1+s_{i}\right)\left(1+s_{j}\right)-\frac{1}{4} \sum_{i j} P_{i j}\left(1-s_{i}\right)\left(1-s_{j}\right) \\
& =\frac{1}{4} \sum_{i j} P_{i j}\left(1+s_{i} s_{j}+2 s_{i}\right)-\frac{1}{4} \sum_{i j} P_{i j}\left(1+s_{i} s_{j}-2 s_{i}\right) \\
& =\sum_{i j} P_{i j} s_{i}
\end{aligned}
$$

where $P_{i j}=p_{i} \cdot p_{j}$ is the dot product of 4 -momentum.

Deriving the Ising Model Form

Our Hamiltonian is $H_{P}=\left(P_{1}^{2}-P_{2}^{2}\right)^{2}$ where $P_{1}=\sum p_{i} x_{i}$ and $P_{2}=\sum p_{i}\left(1-x_{i}\right)$ where $x_{i}=0$ if final particle i is assigned to particle 1 and 0 otherwise. Then let $x_{i}=\left(1+s_{i}\right) / 2$ so $s_{i}= \pm 1$.

$$
\begin{aligned}
\left(P_{1}^{2}+P_{2}^{2}\right)^{2} & =\sum_{i j k \ell} P_{i j} P_{k \ell} s_{i} s_{k} \\
& =\sum_{i j} J_{i j} s_{i} s_{j} \quad \text { where } \quad J_{i j}=\sum_{k \ell} P_{i k} P_{j \ell}
\end{aligned}
$$

where $P_{i j}=p_{i} \cdot p_{j}$ is the dot product of 4-momentum.

