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The Problem

2 → 2 Collision

Figure 1: Not a frog seen from above.
Or Salad Fingers

From 2111.07806 [1]

• A binary classification
problem

• There are O(2n) possible
classifications.

• What happens if
n ≥ 1000 or so?
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Example: pp → tt̄

Two dominant decay modes for t:
• t→W+b→ ℓνℓb

✓ Cleaner – only one jet
× Missing momentum

• t→W+b→ qq̄b

× Messier – 3 quarks
✓ All momentum accounted for
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Example: pp → tt̄

Two dominant decay modes for t:
• t→W+b→ ℓνℓb

✓ Cleaner – only one jet
× Missing momentum

• t→W+b→ qq̄b

× Messier – 3 quarks
✓ All momentum accounted for

We will look at this decay
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What are they?

• A qubit is a two-dimensional vector:

(
α

β

)
• Describe it as two basis vectors: α

(
1

0

)
+ β

(
0

1

)
• Use fancy QM notation: |ψ⟩ = α |0⟩ + β |1⟩

- Classically, α and β must be 1 or 0.

• You change vector with matrices.

• Quantum 1-qubit “gate” is a 2x2 matrix:

U |ψ⟩ =
(
a b

−b∗ a∗

)(
α

β

)
= new state!
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Two Qubits

Two qubits are a four-dimensional vector:

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩

|00⟩ =


1
0
0
0

 , |01⟩ =


0
1
0
0

 , |10⟩ =


0
0
1
0

 , |11⟩ =


0
0
0
1
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N Qubits

Behold, an N -qubit circuit:

U2N×2N |0⟩2
N︸ ︷︷ ︸

Initial state

Final State
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Variational Quantum Algorithms (VQA)

1 Create a cost function C(θ) that you want to minimize,

▶ (In a physics context, think of the Hamiltonian, action,
entropy, etc.)

2 And parameterized quantum circuit ansatz that produces
state |θ⟩ to find ⟨θ|C|θ⟩.

3 A classical optimizer changes values of θ to lower cost
function.

4 Repeat until the minimum is found

Just like a neural network but the network is replaced by a quantum circuit
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What can we minimize for tt̄?

Mass Difference:

HP = (P 2
1 − P 2

2 )
2

where P1 =
∑

(particles’ p assigned to t)

P2 =
∑

(particles’ p assigned to t̄)

4-momentum squared equals mass squared:

E2 = p2 +m2 =⇒ m2 = E2 − p2 = pµpµ = p2
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Quantum Approximation Optimization Algorithm (QAOA)

1 Create ansatz from classical HP : A Hamiltonian operator ĤP .

2 Exploit the adiabatic theorem to evolve to ground state of
ĤP : |ψ⟩.

3 Take expectation value: ⟨ψ|ĤP |ψ⟩.
4 Feed into an optimizer to find updated parameters and repeat.

Wait... what parameters?
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Adiabatic Theorem

Exploiting (and enjoying) the Adiabatic theorem:

Ĥ(t) =

(
1− t

T

)
ĤM +

t

T
ĤP

H = HM at early times and H = HP at late times.

Statment: Ground state of ĤM =⇒ ground state of ĤP

Let’s say for no particular reason ĤM =

n∑
i=1

σx
i
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Adiabatic Theorem

Exploiting (and enjoying) the Adiabatic theorem:

Ĥ(t) =

(
1− t

T

)
ĤM +

t

T
ĤP

H = HM at early times and H = HP at late times.

Statment: Ground state of ĤM =⇒ ground state of ĤP

Simple and solvable
Ground state is your answer!

Let’s say for no particular reason ĤM =
n∑

i=1

σx
i
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Plan of Action

Schrödinger equation:

Ĥ |ψ⟩ = i
∂

∂t
|ψ⟩ =⇒ |ψ⟩ = e−iĤt |ψ0⟩

If t = T , then |ψ0⟩ is the ground state of ĤM , then |ψ⟩ is the
ground state of ĤP .

But how?
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Plan of Action
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Plan of Action

We did it!

p (discrete) replaces t (continuous)

|γ,β⟩ =
p∏

j=1

exp
[
−iβjĤM

]
exp

[
−iγjĤP

]
|+⟩

Small steps of time-evolutions...

• exp
[
−iβjĤM

]
: An x rotation of all n qubits separately

• exp
[
−iγjĤP

]
: A zz rotation on all qubit pairs
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Plan of Action

We did it! p (discrete) replaces t (continuous)

|γ,β⟩ =
p∏

j=1

exp
[
−iβjĤM

]
exp

[
−iγjĤP

]
|+⟩

Small steps of time-evolutions...

• exp
[
−iβjĤM

]
: An x rotation of all n qubits separately

HP = (P 2
1 − P 2

2 )
2 =

∑
Jijsisj =⇒ ĤP =

∑
Jijσ

z
i σ

z
j

This is just the Ising model sans an external field

• exp
[
−iγjĤP

]
: A zz rotation on all qubit pairs
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]
: An x rotation of all n qubits separately

• exp
[
−iγjĤP
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The Circuit

For 3 qubits and a depth of p = 1:

|+⟩

U(ĤP , γ1) U(ĤM , β1)|+⟩ |γ1, β1⟩

|+⟩


Then feed ⟨γ1, β1|ĤP |γ1, β1⟩ into a classical optimizer and repeat.



What is the Problem? Quantum Circuits Game Plan Results Conclusion References Extra

Results

Depth of p = 1:
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Results

Depth of p = 5:
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Results

Depth of p = 10:
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Pros & Cons

Pros

• Finds the global
minimum (as p → ∞)

• Scales less than
exponentially

• QC is very popular –
things will only get better

Cons

• Can get stuck in local
minima

• May need large p

• Quantum advantage only
for large n

• Gates are noisy – NISQ
era for a reason
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Future

• Noise go down, qubits go up.
• But also QAOA isn’t the only contender in town, e.g.

Feedback-Based ALgorithm for Quantum OptimizatioN
(FALQON)1
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Future

• Noise go down, qubits go up.

• But also QAOA isn’t the only contender in town, e.g.
Feedback-Based ALgorithm for Quantum OptimizatioN
(FALQON)1

12103.08619 [3]
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|0⟩ H

U(ĤP , γ1) U(ĤM , β1)

· · ·

|0⟩ H · · ·
...

|0⟩ H · · ·

· · ·

U(ĤP , γp) U(ĤM , βp)
· · ·

· · ·


|γ,β⟩

min
γ,β

⟨γ,β|HP |γ,β⟩
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The Quantum Circuit in Detail

Create ground state of HM

U(HM , β1)

Measure the result

U(HP , γ1)

Repeat for p = 2
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Deriving the Ising Model Form

Our Hamiltonian is HP = (P 2
1 − P 2

2 )
2 where P1 =

∑
pixi and

P2 =
∑

pi(1− xi) where xi = 0 if final particle i is assigned to

particle 1 and 0 otherwise. Then let xi = (1 + si)/2 so si = ±1.

P 2
1 + P 2

2 =
1

4

∑
ij

Pij(1 + si)(1 + sj)−
1

4

∑
ij

Pij(1− si)(1− sj)

=
1

4

∑
ij

Pij(1 + sisj + 2si)−
1

4

∑
ij

Pij(1 + sisj − 2si)

=
∑
ij

Pijsi

where Pij = pi · pj is the dot product of 4-momentum.
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∑
pixi and

P2 =
∑

pi(1− xi) where xi = 0 if final particle i is assigned to

particle 1 and 0 otherwise. Then let xi = (1 + si)/2 so si = ±1.

(P 2
1 + P 2

2 )
2 =

∑
ijkℓ

PijPkℓsisk

=
∑
ij

Jijsisj where Jij =
∑
kℓ

PikPjℓ

where Pij = pi · pj is the dot product of 4-momentum.
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