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Background: What do I do?

HEP Research
Future colliders: ILC, FCC-ee, ReLiC
Monte Carlo Generation of Events, Detector
Response
Perfecting energy, momentum precision

Energy Recovery Linacs (ERLs)

Dimuon Angular Spectra :

Energy Calibration:
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Fit of Best Estimators to 2 Param CBall

 0.0020± =  250.0789 µ

 0.0022± =  0.8129 σ

Chi2 / nDoF = 171.79 / 118

Events / Total = 577903 / 684993

Fit of Best Estimators to 2 Param CBall

Using the DiMuon Mass Spectra!:
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Current Talk – Why should you care about this?

1.) Understanding Monte Carlo
2.) Understanding how to Monte Carlo FAST
3.) Understanding how to Math
Observations:

Time for breakthroughs in physics is longer
Physics is expensive, impact on environment
Understanding from first principles is hard
To quote a KU CS Professor recalling a talk with a member of the White House:
”Machine learning is not a solution. It is successive approximations designed to fool (less intelligent) people
that it is a solution.”

What to do?

Solution: Fast, precise, computations with quick design turn around
Monte Carlo can be this!
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Current Talk – Funny view of the “future”

Just get ChatGPT to write your Monte Carlo...
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Current Talk – Funny view of the “future”

Then compile and run the code using ROOT on KU HPC...

But this method isn’t the best for reasons that will be shown later!
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Current Talk – What is Monte Carlo

Using randomness, random variables, to solve mathematical or
statistical or numerical problems.

No “one size fits all” approach.

NOTABLE USES:
Integration of otherwise unintegrable (difficult) functions

Optimization (fitting) of large parameter space (difficult) problems
– MCMC fitting

Convolution of functions

Having data and model driven simulations
–Can be semi-analytical or entirely empirical
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Gotta go fast p1 – Precision

Speed and precision are coupled in computation (MC)

Ex: Time to loop using different variables:

Integer (16 bit) = 1 N

Float (32 bit) = 1.2 N

Double (64 bit) = 2.3 N

Long (128 bit) = 5.6 N

Conclusion: Understand your precision needs.

Find ways to do your large loops or sampling using integers.

Ex.
Your best measured constant needed is Z Boson mass (known to 6
digits) ... Can get away with Float(Single) precision as it is good to
7.2 digits.
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Gotta go fast p2 – Sorting

Suppose you have the following data (made concise for presentation):

Example Data

Energy Px Py Pz Mass Charge

100.4 0.00 0.01 100.4 m e 1.0

100.1 0.05 0.02 100.1 m e 1.0

100.3 0.01 0.02 100.3 m e 1.0

100.2 0.02 0.00 100.2 m e 1.0

You want to randomly sample these as rows...

So you choose the “Energy” column and randomly choose one

WHY IS THIS SLOW (BAD)?
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Gotta go fast p2 – Sorting

Remove repeated columns, create an index (SORT) following an
ORDERED column

Example Data

Energy Px Py Pz Index

100.4 0.00 0.01 100.4 4

100.1 0.05 0.02 100.1 1

100.3 0.01 0.02 100.3 3

100.2 0.02 0.00 100.2 2

Generate a random permutation of [1...4] instead of asking for one of
[100.4,100.1,100.3,100.2]

This change may seem minor to yourself BUT
Integer permutation faster than random choice Float/Double
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Gotta go fast p3 – Fitted and Sorted Sampling

What if you have some weighting for sampling? Then how to
proceed?

Two questions to ask:
–Do you know the function for the weighting that depends on one of
the variables e.g. Fw (E )?
–If no can you fit a weighting function across the entire range?

If yes to the first question then use the weighting function (Fw ) that
you already know.

If no and then yes then fit Fw across your data range.

If no to both then try to fit a weighting function in various sub-ranges
of your data. Then you will have Fw ,1,Fw ,2... for all the sub-ranges.

This method doesn’t help if you go to Fw ,N for N data points.

Brendon Madison ( University of Kansas ) Methods to Improving Monte Carlo March 25, 2023 11 / 15



Gotta go fast p3 – Fitted and Sorted Sampling

Dynamically cuts sampling indices, weights, using the fit and sorting

Have Fw (I1, I2) ; randomly choose a Fw range thus reduce range on I1,I2 to only randomly sample the desired
sub-range.

Normalize weights in range too so computer does less operations before successful pass in sub-range.

Ex. MC with 100k database generating 1000 events using Fitted
Sorting reduced execution from 16:30 min to 4:05 min.
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Gotta go fast p4 – Analytic Derivation of Random Variates

Earlier ChatGPT used Box-Muller to get Gaussian Random Variate

This is disadvantageous for two reasons:
1.) It is slow
2.) It is a numerical approximation

HOW TO GO FASTER?
–TIME TO USE MATH

Use INVERSE TRANSFORM SAMPLING
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Gotta go fast p4 – Analytic Derivation of Random Variates

Inverse Transform Sampling , How to Math
Cumulative Distribution Function (CDF) of distribution = F (x)
Set F (x) equal to uniform random variate RU

Solve for x
Ex. Gaussian Fg (x) = RU = 1

2

[
1 + erf

(
x−µ√
2σ

)]
2RU − 1 = erf

(
x−µ√
2σ

)
erf−1 (2RU − 1) = x−µ√

2σ

x =
√
2σ[erf−1 (2RU − 1)] + µ

Test this!
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Finishing this off – Do other distributions

You can do this with tons of distributions!

Eight examples in https://github.com/BrendonMadison/InverseSamplingExamples

Can even make your own distributions (random variates)

For example – Skewed Arc Sine (useful in parity violating particle events) like dimuon production!

PDF : P(x) = 1
π
[x(1 − x)]f (ALR )

Where f (ALR ) is a function dependent on the Left-Right asymmetry of the events

Example output:

hnew
Entries  1000000
Mean   0.2586
Std Dev    0.3443

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
) or something...θCos(

0

50

100

150

200

250

300

350

400

310×

B
in

 C
ou

nt
 fo

r 
1M

 E
ve

nt
s,

 1
00

 b
in

s

hnew
Entries  1000000
Mean   0.2586
Std Dev    0.3443

 = 0.5LRSkewed ArcSine with A
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