USING ML TO BREAK THE UNNATURALNESS OF NATURE

LAWRENCE LEE

Why is the Higgs so light?

Why is the Higgs so light?

125 GeV

1 GeV

Why is the Higgs so light?

125 GeV

1 GeV

$$m_H^2 = m_{H,bare}^2 - \Delta m^2$$

$$m_H^2 = m_{H,bare}^2 - \Delta m^2$$

$$(125 \text{ GeV})^2 \sim 10^4 \text{ GeV}^2$$

$$m_H^2 = m_{H,bare}^2 - \Delta m^2$$

$$M_H^2 = M_{H,bare}^2 - \Delta m^2$$

$$M_U^2$$

$$(125 \text{ GeV})^2 \sim 10^4 \text{ GeV}^2$$

 $m_H^2 = m_{H,bare}^2 - \Delta m^2$

 $O(10^4) = ? - O(10^{38})$

 $m_H^2 = m_{H,bare}^2 - \Delta m^2$

 $O(10^4) = ? - O(10^{38})$ IF WE TAKE STANDARD MODEL TOO SERIOUSLY ...

Bare mass and quantum corrections need to cancel **34 decimal places** to match observations

 $\pi \cong 3.1415926535 \ 8979323846 \ 2643383279 \ 5028841971 \ 6939937510 \ \dots$

If I showed you a "new" constant χ , you'd say this is deeply connected to π

χ≅3.1415926535 8979323846 2643383279 502<mark>2431232 3654386221</mark> ...

 $\pi \cong 3.1415926535 \ 8979323846 \ 2643383279 \ 5028841971 \ 6939937510 \ \dots$

If I showed you a "new" constant χ , you'd say this is deeply connected to π

χ≅3.1415926535 8979323846 2643383279 502<mark>2431232 3654386221</mark> ...

But the SM says this is truly a coincidence in the Higgs mass calculation!

The Naturalness Problem

"Unnatural" if unrelated numbers just happen to cancel to **34 decimal places**

Why is the Higgs sector so *unnatural?*

Only a problem because **m_{Planck} >> m_H**

i.e. Why is gravity so much weaker than the other forces?

The (Gauge) Hierarchy Problem

REMEMBER:

Higgs likes to couple to **heavy** particles (it's ~why they're heavy)

REMEMBER:

Higgs likes to couple to **heavy** particles (it's ~why they're heavy)

And these couplings give $\Delta m^2!$

So the **top quark** (heaviest SM particle) is the worst offender!

 Δm^2 $m_H^2 = m_{H,bore}^2$ $\Delta m^2 = \sum \Delta m_f^2 + \sum \Delta m_b^2$ b $\Delta m^2 = \Delta m_t^2 + \ldots$ Η $\sim -c_t \Lambda_{IV}^2 + \ldots$

 $m_H^2 = m_{H,byre}^2$ $\Delta m^2 = \sum \Delta m_f^2 + \sum \Delta m_b^2$ b $\Delta m^2 = \Delta m_t^2 + \ldots$ н Η $\sim -c_t \Lambda_{IV}^2 + \ldots$ $\Delta m_f^2 \sim - \Lambda_{UV}^2$

 $m_H^2 = m_{H,byre}^2$ $\Delta m^2 = \sum \Delta m_f^2 + \sum \Delta m_b^2$ b $\Delta m^2 = \Delta m_t^2 +$ Η Н $\sim -c_t \Lambda_{UV}^2 +$ $\Delta m_f^2 \sim - \Lambda_{UV}^2$ Some constant given the quantum numbers of the top quark

 $m_H^2 = m_{H,byre}^2$ $\Delta m^2 = \sum \Delta m_f^2 + \sum \Delta m_b^2$ b $\Delta m^2 = \Delta m_t^2 +$ Н Η $\sim -c_t \Lambda_{UV}^2 +$ $\Delta m_f^2 \sim - \Lambda_{UV}^2$ Some constant given That gross quad. the quantum numbers divergence of the top quark

9

 Δm^2 $m_H^2 = m_{H,bore}^2$ $\Delta m^2 = \sum \Delta m_f^2 + \sum \Delta m_b^2$ b

To leading order fermions and bosons contribute with opposite sign

$$\Delta m^2 = \Delta m_t^2 + \dots$$
$$\sim -c_t \Lambda_{UV}^2 + \dots$$

$$\Delta m^2 = \Delta m_t^2 + \dots$$
$$\sim -c_t \Lambda_{UV}^2 + \dots$$

Possible solution: Make the Higgs mass corrections less sensitive to the UV cutoff...

$$\Delta m^2 = \Delta m_t^2 + \dots$$
$$\sim -c_t \Lambda_{UV}^2 + \dots$$

$$\Delta m_f^2 \sim -\Lambda_{UV}^2$$
$$\Delta m_b^2 \sim +\Lambda_{UV}^2$$

Possible solution: Make the Higgs mass corrections less sensitive to the UV cutoff...

$$\Delta m^{2} = \Delta m_{t}^{2} + \dots$$

$$\sim -c_{t} \Lambda_{UV}^{2} + \dots$$

$$\Lambda_{f}^{2} \sim -\Lambda_{UV}^{2}$$

$$+c_{t} \Lambda_{UV}^{2} + \dots$$

Possible solution: Make the Higgs mass corrections less sensitive to the UV cutoff...

SUPERSYMMETRY (SUSY):

Fundamental relationship between fermions and bosons

SUPERSYMMETRY (SUSY):

Fundamental relationship between fermions and bosons

SUPERSYMMETRY (SUSY):

Fundamental relationship between fermions and bosons

If every SM particle had a SUSY partner w/ same quantum numbers (except spin), We could cancel off these quadratic divergences

 $m_H^2 = m_{H,bare}^2 - \Delta m^2$ Λ^2_{UV} $10^4 \, \text{GeV}^2$ $(1 \text{ TeV})^2$ $O(10^4) = ? - O(10^6)$

Supersymmetry is pretty super

- TeV-Scale SUSY can solve a lot of problems simultaneously
 - Deflates naturalness problem
 - Electroweak Symmetry Breaking just falls out
 - Gives hope for gauge coupling unification
 - Convenient **WIMP DM candidate** in the lightest SUSY particle (LSP)
 - SUSY is the only mathematically possible extension of the Poincaré group. Why wouldn't it be realized in nature? (<u>HLS</u>)

Supersymmetry is pretty super

 TeV-Scale SUSY can solve a lot simultaneousl

```
1. Simple postulate: fermions \leftrightarrow bosons
```


mancally possible

wouldn't it be realized in nature? (<u>HLS</u>)
Supersymmetry is pretty super

 TeV-Scale SUSY can solve a lot simultaneousl

```
    Simple postulate: fermions ↔ bosons
    Simple a Lagrangian w/ all gauge invariant terms
```


mancally possible

why the poincaré group. Why

wouldn't it be realized in nature? (<u>HLS</u>)

Supersymmetry is pretty super

 TeV-Scale SUSY can solve a lot simultaneousl

```
1. Simple postulate: fermions \leftrightarrow bosons
 2. Write a lagrangian w/ all gauge invariant terms
  3. Solve 🔌 so 🔌 many 🔌 SM 🔌 problems
                              mancally possible
         non of the Poincaré group. Why
                                                              55,58
   wouldn't it be realized in nature? (HLS)
                                                                6<sup>h</sup>58<sup>m</sup>42<sup>s</sup>
                                                                       36<sup>s</sup>
                                                                            30<sup>s</sup>
                                                                                          12^{s}
                                                                                 24<sup>s</sup>
                                                                                      18<sup>s</sup>
```

ATLAS SUSY Searches* - 95% CL Lower Limits

July 2020											$\sqrt{s} = 13$ lev
	Model	Signatu	re	$\int \mathcal{L} dt [\text{fb}^-]$		ss limit					Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, μ 2-6 jets mono-jet 1-3 jets	$E_T^{ m miss}$ $E_T^{ m miss}$	139 36.1	 <i>q̃</i> [10× Degen.] <i>q̃</i> [1×, 8× Degen.] 	0.43	0.71		1.9	$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ $m(\tilde{q}) - m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	ATLAS-CONF-2019-040 1711.03301
	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}^0_1$	0 <i>e</i> , <i>µ</i> 2-6 jets	$E_T^{\rm miss}$	139	ري مع مع		Forbidden	1.1	2.35 15-1.95	$\mathfrak{m}(ilde{\chi}_1^0){=}0~{ extsf{GeV}}$ $\mathfrak{m}(ilde{\chi}_1^0){=}1000~{ extsf{GeV}}$	ATLAS-CONF-2019-040 ATLAS-CONF-2019-040
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 <i>e</i> , <i>µ</i> 2-6 jets		139	ĝ				2.2	$m(\tilde{\chi}_1^0)$ <600 GeV	ATLAS-CONF-2020-047
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}^0_1$	$ee, \mu\mu$ 2 jets	E_T^{miss}	36.1	ε̃ρ σ			1.2		$m(\tilde{g})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\chi_1^\circ$	$0 e, \mu$ 7-11 jets SS e, μ 6 jets	E_T^{mass}	139 139	το δ δ δ		1	.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	ATLAS-CONF-2020-002 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow tt \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1 } e, \mu & \text{3 } b\\ \text{SS } e, \mu & \text{6 jets} \end{array}$	E_T^{miss}	79.8 139	150 150			1.25	2.25	$m(\tilde{\chi}_1^0)$ <200 GeV $m(\tilde{g})$ - $m(\tilde{\chi}_1^0)$ =300 GeV	ATLAS-CONF-2018-041 1909.08457
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0 / t \tilde{\chi}_1^{\pm}$	Multiple Multiple		36.1 139	$egin{array}{ccc} ilde{b}_1 & Forbidden \ ilde{b}_1 \end{array}$	Forbidden	0.9 0.74		$m(\tilde{\chi}_1^0)=200Ge$	$m(\tilde{\chi}_{1}^{0})$ =300 GeV, BR($b\tilde{\chi}_{1}^{0}$)=1 V, $m(\tilde{\chi}_{1}^{\pm})$ =300 GeV, BR($t\tilde{\chi}_{1}^{\pm}$)=1	1708.09266, 1711.03301 1909.08457
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$ \begin{array}{cccc} 0 & e, \mu & & 6 & b \\ 2 & \tau & & 2 & b \end{array} $	$\begin{array}{c} E_T^{\rm miss} \\ E_T^{\rm miss} \end{array}$	139 139	^b ₁ Forbidden ^b ₁		0 0.13-0.85	.23-1.35	$\Delta m(\tilde{\chi}^0_2, \Delta m(\tilde{\chi}^0_2))$	$ \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=100 \text{ GeV} \\ \tilde{\chi}_{2}^{0}, \tilde{\chi}_{1}^{0})=130 \text{ GeV}, m(\tilde{\chi}_{1}^{0})=0 \text{ GeV} $	1908.03122 ATLAS-CONF-2020-031
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet	E_T^{miss}	139	\tilde{t}_1			1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	ATLAS-CONF-2020-003, 2004.14060
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	$1 e, \mu$ $3 jets/1 h$	$b = E_T^{\text{miss}}$	139	\tilde{t}_1	0.44-0.	59	10		$m(\tilde{\chi}_1^0)=400 \text{ GeV}$	ATLAS-CONF-2019-017
	$t_1 t_1, t_1 \rightarrow \tilde{\tau}_1 b v, \tilde{\tau}_1 \rightarrow \tau G$	$1\tau + 1e, \mu, \tau = 2ets/1i$	E_T^{miss}	36.1	<i>t</i> ₁		0.95	.16		$m(\tau_1)=800 \text{ GeV}$	1803.10178
	$t_1t_1, t_1 \rightarrow c\chi_1 / cc, c \rightarrow c\chi_1$	$0 e, \mu \qquad 2 c$	L_T	30.1	\tilde{t}_1	0.46	0.65			$m(\tilde{\chi}_1)=0 \text{ GeV}$ $m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=50 \text{ GeV}$	1805.01649
		0 e, µ mono-je	t E_T^{miss}	36.1	\tilde{t}_1	0.43				$m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5$ GeV	1711.03301
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h\tilde{\chi}_1^0$	1-2 e, μ 1-4 b	$E_T^{\rm miss}$	139	\tilde{t}_1		0.067 <mark>-</mark>	1.18		$m(\tilde{\chi}_2^0)$ =500 GeV	SUSY-2018-09
	$\tilde{t}_2\tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 <i>e</i> ,μ 1 <i>b</i>	$E_T^{\rm miss}$	139	\tilde{t}_2	Forbidden	0.86		$m(\tilde{\chi}_1^0) = 3$	360 GeV, m(\tilde{t}_1)-m($\tilde{\chi}_1^0$)= 40 GeV	SUSY-2018-09
EW direct	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ll} 3 \ e,\mu \\ ee,\mu\mu & \geq 1 \ \mathrm{jet} \end{array}$	E_T^{miss} E_T^{miss}	139 139	$rac{ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0}{ ilde{\chi}_1^{\pm}/ ilde{\chi}_2^0}$ 0.205		0.64			$m(ilde{\chi}_1^0){=}0 \ m(ilde{\chi}_1^1){=}5 \ GeV$	ATLAS-CONF-2020-015 1911.12606
	$ ilde{\chi}_1^{\pm} ilde{\chi}_1^{\mp}$ via WW	2 <i>e</i> , <i>µ</i>	$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}$	0.42				$m(\tilde{\chi}_1^0)=0$	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	0-1 <i>e</i> , μ 2 <i>b</i> /2 γ	E_T^{miss}	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ Forbidden		0.74			$m(\tilde{\chi}_1^0)=70 \text{ GeV}$	2004.10894, 1909.09226
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ via $\tilde{\ell}_L / \tilde{\nu}$	2 e, µ	E_T^{miss}	139	$\tilde{\chi}_1^{\pi}$		1.0			$m(\tilde{\ell},\tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1908.08215
	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \chi_1^0$ $\tilde{\tau} \tilde{\tau} \rightarrow \tilde{\tau} \chi_1^0$	2τ	E_T^{miss}	139	τ [τ _L , τ _{R,L}] 0.16-0.3	0.12-0.39	0.7			$m(\chi_1^0)=0$ $m(\tilde{\chi}_1^0)=0$	1911.06660
	$\iota_{\mathrm{L},\mathrm{R}}\iota_{\mathrm{L},\mathrm{R}},\iota\to\iota\chi_{1}$	$ee, \mu\mu \ge 1$ jet	E_T^{miss}	139	<i>t</i> 0.256		0.7			$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
	$\tilde{H}\tilde{H},\tilde{H}{ ightarrow}h\tilde{G}/Z\tilde{G}$	$\begin{array}{ll} 0 \ e, \mu & \geq 3 \ b \\ 4 \ e, \mu & 0 \ \text{jets} \end{array}$	E_T^{miss} E_T^{miss}	36.1 139	<i>H</i> 0.13-0.23 <i>H</i>	0.55	0.29-0.88			$ BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 1 \\ BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = 1 $	1806.04030 ATLAS-CONF-2020-040
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet	$E_T^{\rm miss}$	36.1	$ \begin{array}{c} \tilde{\chi}_1^{\pm} \\ \tilde{\chi}_1^{\pm} \end{array} 0.15 \end{array} $	0.46				Pure Wino Pure higgsino	1712.02118 ATL-PHYS-PUB-2017-019
	Stable \tilde{g} R-hadron	Multiple		36.1	<i>g</i>				2.0		1902.01636,1808.04095
	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4	$m(\tilde{\chi}_1^0)$ =100 GeV	1710.04901,1808.04095
RPV	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e, µ		139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=1]	0.	625 1.0	5		Pure Wino	ATLAS-CONF-2020-009
	$LFV \ pp \to \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \to e\mu/e\tau/\mu\tau$	$e\mu,e au,\mu au$		3.2	$\tilde{\nu}_{\tau}$				1.9	λ'_{311} =0.11, $\lambda_{132/133/233}$ =0.07	1607.08079
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to WW/Z\ell\ell\ell\ell\nu\nu$	4 <i>e</i> , μ 0 jets	E_T^{miss}	36.1	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.82	1.33		$m(\tilde{\chi}_1^0)$ =100 GeV	1804.03602
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$	4-5 large- <i>R</i> Multiple	jets	36.1 36.1	$\tilde{g} = [m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$ $\tilde{g} = [\chi_{112}''=2e-4, 2e-5]$		1.0	1.3	1.9 2.0	Large λ_{112}'' m($\tilde{\chi}_1^0$)=200 GeV, bino-like	1804.03568 ATLAS-CONF-2018-003
	$t\tilde{t}, t \to t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \to tbs$	Multiple		36.1	$\tilde{t} = [\lambda''_{323} = 2e-4, 1e-2]$	0.55	1.0 <mark>5</mark>	5		m($\tilde{\chi}_1^0$)=200 GeV, bino-like	ATLAS-CONF-2018-003
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow b\tilde{\chi}_{1}^{\pm}, \tilde{\chi}_{1}^{\pm} \rightarrow bbs$	$\geq 4b$		139	ĩ	Forbidden	0.95			$m(\tilde{\chi}_1^{\pm})$ =500 GeV	ATLAS-CONF-2020-016
	$\overline{t}_1 \overline{t}_1, \overline{t}_1 \rightarrow bs$	2 jets + 2	b	36.7	$\tilde{t}_1 [qq, bs]$	0.42 0	.61				1710.07171
	$t_1 t_1, t_1 \rightarrow q \ell$	$2 e, \mu$ $2 b$ 1μ DV		36.1 136	$t_1 = t_1$ $t_1 = [1e-10 < \lambda'_{23k} < 1e-8, 3e-10 < \lambda'_{23k}$	<3e-9]	1.0	0.4-1.45	6	$BR(t_1 \rightarrow be/b\mu) > 20\%$ $BR(\tilde{t}_1 \rightarrow q\mu) = 100\%, \cos\theta_t = 1$	1710.05544 2003.11956
Orali	a colocition of the surfleting	an limite en seus stat	00.07	4	li ∩−1	<u> </u>		1		<u> </u>	
Uniy	a selection of the available ma	ass iimits on new stat	1	U			I		Mass scale [TeV]		

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

10⁻¹

ATLAS Preliminary $\sqrt{s} = 13$ TeV

Universe is 1-in-∆ fine-tuned If want small fine-tuning, need low masses for new physics!

Universe is 1-in-∆ fine-tuned If want small fine-tuning, need low masses for new physics!

- Are there any opportunities left to discover ≤TeV-scale BSM at the LHC?
- Focus on scenarios where limits might be weak, because of very large BGs

3 >10 yrs of LHC searches

Why haven't we found anything?

R - P A R I T Y V I O L A T I O N (R P V)

 $P_R = (-1)^{3(B-L)+2s}$

R - PARITY VIOLATION (RPV)

R - P A R I T Y V I O L A T I O N (R P V)

Baryon Number

 $P_R = (-1)^{3(B-L)+2s}$

R - PARITY VIOLATION (RPV)

Lepton Number

Baryon Number

 $P_R = (-1)^{3(B-L)+2s}$

R - PARITY VIOLATION (RPV)

Lepton Number

Baryon Number

Spin

$P_R = (-1)^{3(B-L)+2s}$

• R-Parity: SUSY-partner-ness

 $P_R = (-1)^{3(B-L)+2s}$

• +1 SM, -1 SUSY partner

• R-Parity: SUSY-partner-ness

$$P_R = (-1)^{3(B-L)+2s}$$

- +1 SM, -1 SUSY partner
- Conserving P_R (multiplicatively) → Every vertex contains even number of sparticles
 - Sparticle **pair** production at colliders
 - Lightest sparticle (LSP) must be stable (and could be DM)

• R-Parity: SUSY-partner-ness

$$P_R = (-1)^{3(B-L)+2s}$$

- +1 SM, -1 SUSY partner
- Conserving P_R (multiplicatively) → Every vertex contains even number of sparticles
 - Sparticle **pair** production at colliders
 - Lightest sparticle (LSP) must be stable (and could be DM)
- Notice: If B and L are conserved
 → R-parity conserved

• R-Parity: SUSY-partner-ness

$$P_R = (-1)^{3(B-L)+2s}$$

- +1 SM, -1 SUSY partner
- Conserving P_R (multiplicatively) ➡ Every vertex contains even number of sparticles
 - Sparticle **pair** production at colliders
 - Lightest sparticle (LSP) must be stable (and could be DM)
- Notice: If B and L are conserved
 → R-parity conserved
- The vast majority of SUSY searches assume this is conserved

But...

But...

Simple postulate: fermions ↔ bosons Swrite a lagrangian w/ all gauge invariant terms Solve š so š many š SM s problems

2.5 Throw away terms we didn't like (in RPC)

• Why do we talk about R-Parity Conserving SUSY so much?

• "Stable LSP \rightarrow DM"

- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"

- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:

- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
 - Even if RPV allows LSP decays, can still have **gravitino DM or something** else

- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
 - Even if RPV allows LSP decays, can still have gravitino DM or something else
 - B and L are only **accidental** symmetries in SM.

- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
 - Even if RPV allows LSP decays, can still have gravitino DM or something else
 - B and L are only **accidental** symmetries in SM.
 - Not fundamental symmetries of the SM. (SM even violates them nonperturbatively)

- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
 - Even if RPV allows LSP decays, can still have gravitino DM or something else
 - B and L are only **accidental** symmetries in SM.
 - Not fundamental symmetries of the SM. (SM even violates them nonperturbatively)
 - MSSM violates them unless you explicitly forbid it

- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
 - Even if RPV allows LSP decays, can still have gravitino DM or something else
 - B and L are only **accidental** symmetries in SM.
 - Not fundamental symmetries of the SM. (SM even violates them nonperturbatively)
 - MSSM violates them unless you explicitly forbid it
 - Seems more contrived to manually forbid couplings

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

L Violating

B Violating

- General RPV superpotential in MSSM
 - Signature-generating machine
- At colliders:
 - Allow for **single-production** of sparticles
 - Couplings allow LSP to **decay**

$$P_R = (-1)^{3(B-L)+2s}$$

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

L Violating

B Violating

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

L Violating

B Violating

TREE LEVEL NEUTRINO MASSES+MIXING

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

B Violating

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

B Violating

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

R-PARITY VIOLATING SUSY

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

R-PARITY VIOLATING SUSY

R-PARITY VIOLATING SUSY

SIMPLE EXAMPLE

- We measure the four-momentum of each jet
- Sum them to get the four-momentum of the new particle
- Relativity tells us how to get the mass $(p \cdot p) = m^2$
- Plot this mass and our new physics signals will peak at the mass of the new thing
- Backgrounds steeply falling distribution

Each decays to two jets.

- Increasing multiplicity introduces combinatorial issues
- Wrong combinations don't contain peak-y mass variables → Make signal harder to find.
- Brute-force → Add **combinatorial** background

- Increasing multiplicity introduces combinatorial issues
- Wrong combinations don't contain peak-y mass variables → Make signal harder to find.
- Brute-force → Add **combinatorial** background

- Increasing multiplicity introduces combinatorial issues
- Wrong combinations don't contain peak-y mass variables → Make signal harder to find.
- Brute-force → Add **combinatorial** background

Increasing multiplicity introduces combinatorial issues

LESS SIMPLE EXAMPLE

- Wrong combinations don't contain peak-y mass variables → Make signal harder to find.
- Brute-force → Add **combinatorial** background

- Here one of three possible configurations is correct
- → 200% combinatoric background!
- J Prob of extra ~uncorrelated
 jets produced in the same event
 - Even harder!

Combo

Combo

Combo 2

Time

 λ''

p

p

 $\binom{4}{2}/2 = 3$

q

q

Combinatorics start to annoy us but aren't the end of the world

" ΔR^{Σ} Minimization"

$$\min_{\text{combs}} \left\{ \sum \Delta R_{\text{pair}} + C \right\}$$

" ΔR^{Σ} Minimization"

$$\min_{\text{combs}} \left\{ \sum \Delta R_{\text{pair}} + C \right\}$$

"CLASSICAL" 2x2

- Example of traditional analysis technique
- Use ΔR^{Σ} to try to get peaking mass
- Do a bump hunt in this mass

q

 λ''

0

 \boldsymbol{Q}

q

p

p

"CLASSICAL" 2X2

arXiv:1710.07171

p

35

"CLASSICAL" 2X2

- We can do this search but...
- Sensitivity pretty bad!
- Limits run out at $m(\tilde{t}) \approx 400~{\rm GeV}$
- If stop just out of reach, very natural theory
- [i.e. maybe RPV couplings have prevented the discovery of a natural BSM]

"CLASSICAL" 2x2

- But in order to get small ΔR^Σ values, stops need to be highly boosted
- Low signal acceptance!
 - Throwing away a lot of the signal...

- Can we do better?
- Can we scale this to larger multiplicities?

But it could easily be that new particles don't produce 4-jet events. The new particles might like to decay to many more jets!

 $\binom{5}{3} = 10$

- Focus on "10-jet", "2x5-jet" signal
- 126 ways to find the 5-jet peak (\tilde{g})
- + each contains extra 10 configs to find intermediate peak ($\tilde{\chi}$)

For the one "correct" view of this event, there are >12k "wrong" views

- But lots of **kinematic information exists** shouldn't need to brute force problem...
- Yes, but have 10 four-vectors → Info in 10x4=40D feature space!
 - Can't construct useful variables by hand...

• Many HEP ML applications say "sig looks like BG. Let's try a DNN."

ML?

- Always remember: **ML ≠ Magic.** Just a lot of Linear Alg
- This is different: Sig and BG look very different.
 - (It's just that they look different in 40D)
- It's not that we have little information
- We have **way too much** information!!! Large dim feature space.

And it's a shame...

Because this is really well motivated...

BACK TO 2X2

- Let's play with some Neural Nets to solve (relatively) simple problem
- What input structure?
- Some HEP applications use full 4-momenta:

BACK TO 2X2

NN w/ Lorentz Layer

- Construct a NN layer that knows about relativity!
- Input four-momenta → Knows how to do four-vector addition, calculate mass!
- Don't need a network to learn physics we already know about!
- NN is optimizing in physics basis
- Send into "traditional" feedforward neural net to reduce dimensionality of problem

NN W/ LORENTZ LAYER

CANNONBALL:

Combinatoric Artificial NN ON (BAckronym) Lorentz Layer

- Output not a single score.
- **Outputs** *interpretation* of event to choose the "best" combination for us
- Then traditional analysis methods come in!
 - [Including systematics]

ISR Score

Comb. Score

- ΔR^Σ minimization does terribly at getting the right pairing!
- CANNONBALL performs ~30x better at large mass
- And is fairly robust to mismeasurement of jets (€)

- D_{KL}: A measure of how much two PDFs differ
- How well each method reconstructs full four-vec of the heavy resonances (i.e. getting the right comb. answer)
- CANNONBALL's big advantage is at low stop p_T

$$\mathcal{D}_{\mathrm{KL}}\left(T||P\right) = \int T \log\left(\frac{T}{P}\right) dp^{\mu}$$
$$= \sum_{p_{\mathrm{T}} \text{ bins } \eta, \phi, \text{m bins}} T \log\left(\frac{T}{P}\right)$$
$$= \sum_{p_{\mathrm{T}} \text{ bins}} \mathcal{D}_{\mathrm{KL}}^{\eta, \phi, \text{m}}\left(T||P, p_{\mathrm{T}}\right)$$

- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
 - Ongoing work

- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
 - Ongoing work

 ΔR^{Σ} does terribly unless boosted.

To see peak, throw away low p_T

- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
 - Ongoing work

 ΔR^{Σ} does terribly unless boosted.

To see peak, throw away low p_T

Mass Asymmetry Min

Large off-peak contributions...

- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
 - Ongoing work

 ΔR^{Σ} does terribly unless boosted.

To see peak, throw away low p_T

Mass Asymmetry Min

Large off-peak contributions...

A Badea, W Fawcett, J Huth, TJ Khoo, R Poggi, LL – arXiv:2201.02205

- Attack large dim feature spaces
- If we think in this way, realize lots of room for low mass new particles from natural theories!
- Hidden under the SM BGs and combinatorial BGs created by our lack of 40D tools
- Not using ML to eke out a little more exclusion power

- Attack large dim feature spaces
- If we think in this way, realize lots of room for low mass new particles from natural theories!
- Hidden under the SM BGs and combinatorial BGs created by our lack of 40D tools
- Not using ML to eke out a little more exclusion power

Trying to enable searches that are really (really) hard that might actually **DISCOVER** something.

Thanks for your attention!

R-PARITY VIOLATING SUSY

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

L Violating

R-PARITY VIOLATING SUSY

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

L Violating

- Low energy/Electroweak constraints
 - **Proton lifetime limits** set *very* strict bounds on simultaneous L- and B-violation here (for light flavor couplings)
 - **Z boson** line shape measurements set some limits on L-violation in RPV
 - Biggest constraints on (light flavor) λ" come from n-nbar oscillation limits
 - nEDM<<1 also constrains certain λ"

- Using pyTorch
 - Training on NVIDIA Quadro RTX w 8GB RAM using CUDA 11.5
- Enforcing mass invariance by mixing masses (democratically) in training sample
 - 180k events x 20 masses
- Loss fn: Binary cross entropy, minimized using Adam.
- Learning rate of 1e-3 playing with dynamic learning rate
- Batch size of 10k
- 30 combination layer nodes
- 3 hidden layers in head (200 nodes)

$bare + \Delta m_{SM}^2 + \Delta m_{BS}^2$	· Δ	are 4	2 H,ba	= <i>M</i>	$n_{H}^{2} =$	Ń
$W = \frac{\pm 1}{1}$	${\scriptstyle\pm1\atop1}$	$ W_{}$	t	$\begin{array}{ccc} & c \\ & - & - & - \end{array}$		q = +2/3 s = 1/2
	0 1	Z	$\begin{bmatrix} 1 \\ 1 \end{bmatrix} b$	$\stackrel{ }{}$ S	d	$-\frac{1/3}{1/2}$
$r \qquad \gamma \qquad 0 \\ 1 \qquad 1$	0 1		$^{\mid}_{\mid}$ $\nu_{ au}$	$\stackrel{\scriptstyle }{\scriptstyle \scriptstyle \scriptstyle \mid} u_{\mu}$	ν_e	$0 \ 1/2$
$g = \frac{0}{1}$ What if we say	0 1	g	artau	μ	е	-1 $1/2$
$\tilde{\chi}_{1}^{2} = \tilde{\chi}_{1}^{\pm} = \tilde{\chi}_{1}^{\pm}$ particle has a particle has a particle") that of	± 1 1/2	$\tilde{\chi}_{1}^{\pm}$	$\widetilde{t}_{1,2}$	$\widetilde{c}_{R,L}$	$\tilde{u}_{R,L}$	$+2/3 \\ 0$
$\tilde{\chi}_{2}^{\pm}$ $\tilde{\chi}_{2}^{\pm}$ $\tilde{\chi}_{1/2}^{\pm}$ off correction	± 1 1/2	$ ilde{\chi}_2^{\pm}$	$\tilde{b}_{1,2}$	$\widetilde{s}_{R,L}$	$\widetilde{d}_{R,L}$	$-1/3 \\ 0$
$\tau \qquad \widetilde{\chi}^0_{1-4} \qquad \stackrel{0}{}_{1/2}$	$0 \ 1/2$	$\tilde{\chi}^0_{1-4}$	$\tilde{\nu}_{\tau}$	$\stackrel{ }{}_{-}$ $\widetilde{ u}_{\mu}$	$\widetilde{ u}_e$	0 0
$,2$ \tilde{g} 0 $1/2$ SUPERSYMME	$egin{array}{c} 0 \ 1/2 \end{array}$	\widetilde{g}	$\tilde{ au}_{1,2}$	$\tilde{\mu}_{R,L}$	$\widetilde{e}_{R,L}$	$-1 \\ 0$
$ \begin{array}{c c} & & & \\ \hline & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & $		H^{\pm}	H^0	A^{0}	h^{0}	0 0

$m_{SM}^2 + \Delta m_{BSM}^2$	$\vdash \Delta$	are –	2 H,ba	= <i>M</i>	$n_{H}^{2} =$	Ń
	± 1	$ W_{}$				q = +2/3 s = 1/2
	$\begin{array}{c} 0 \\ 1 \end{array}$	Z	$\begin{bmatrix} 1 \\ 0 \end{bmatrix} b$	S	d	$-\frac{1/3}{1/2}$
	0 1	$2 \gamma_{-}$	$^{\mid}$ $\nu_{ au}$	ν_{μ}	$ u_e $	$0 \ 1/2$
	0 1	$\begin{bmatrix} - & - & - \\ g \end{bmatrix}$	$ au^{-}$	μ	e	-1 1/2
Minimally Supersymmet	± 1 1/2	$\tilde{\chi}_1^{\pm}$	$\widetilde{t}_{1,2}$	$\widetilde{c}_{R,L}$	$\widetilde{u}_{R,L}$	$+2/3 \\ 0$
Extension to the SM	$\pm 1 \\ 1/2$	$\tilde{\chi}_2^{\pm}$	$\tilde{b}_{1,2}$	$\widetilde{s}_{R,L}$	$\widetilde{d}_{R,L}$	$-\frac{1}{3}{0}$
(MSSM)	$0 \ 1/2$	$ ilde{\chi}^{0}_{1-4}$	$\stackrel{ }{}_{ m }$ $ ilde{ u}_{ au}$	${ ilde u}_\mu$	${ ilde u}_e$	0 0
	$0 \ 1/2$	\tilde{g}	$\tilde{ au}_{1,2}$	$\tilde{\mu}_{R,L}$	$\tilde{e}_{R,L}$	-1 0
	± 1 0	H^{\pm}	H^0	A^{0}	h^0	0 0

R-PARITY VIOLATING SUSY

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

L Violating

- λ" gives rise to all-hadronic
 final states at LHC
- B-Violating SUSY could easily hide at LHC

- Papers have argued for low-level calo images → CNN: <u>1805.10730</u> <u>1711.03573</u>
- Could work, but overly complicates...
 - Most of the detector is empty! Inefficient!
 - Throw away all jet physics (*) and tries to rediscover it.
 - That's not the problem I'm interested in solving...

50x50 x 3 layers ~ 7.5k Dimensions!

(*) The work it takes to go from raw detector info to calibrated four-vector

Instead, use huge jet physics industry...

Distill calo inputs to **wellunderstood,** calibrated 4-vectors.

Problem "only" 40D

Hand those 4-vectors to a NN
→ Huge head start

- Look in the tails, see no disagreement with background hypothesis
- Limits up to ~1.9 TeV in gluino mass
 - (But also as weak as ~1 TeV!)

- Look in the tails, see no disagreement with background hypothesis
- Limits up to ~1.9 TeV in gluino mass
 - (But also as weak as ~1 TeV!)

COULD BE A GLUINO SITTING THERE AT 1 TEV

THE LHC DREAM

(JUST HAS THIS RPV TERM ON!)

LITTILS UP to ~1.7 TEV IT guillo mase

• (But also as weak as ~1 TeV!)

WE WERE A BIT OPTIMISTIC...

Proton decay

$$W_{RPV} = \mu_i H_u L_i + \frac{1}{2} \lambda_{ijk} L_i L_j E_k + \lambda'_{ijk} L_i Q_j D_k + \frac{1}{2} \lambda''_{ijk} U_i D_j D_k$$

L Violating

$$\Gamma_{p \to e^+ \pi^0} \sim m_{\text{proton}}^5 \sum_{i=2,3} |\lambda'^{11i} \lambda''^{11i}|^2 / m_{\widetilde{d}_i}^4$$

SCANNING RPV Strength

Zero RPV coupling = RPC case

Moderate coupling: Diagrams still dominated by gauge couplings

LSP at end of RPC decay chain then **decays** (potentially displaced) Large coupling: Direct decays if RPV coupling dominates over RPC vertices λ"

SCANNING RPV Strength

q

IS THERE ANY REGION OF THIS SIGNATURE SPACE WE HAVEN'T COVERED YET?

q

q

Zero RPV coupling = RPC case

p

Moderate coupling

Diagrams still dominated by gauge couplings

LSP at end of RPC decay chain then **decays** (potentially displaced)

Large coupling:

Direct decays if RPV coupling dominates over RPC vertices

SCANNING RPV Strength

SCANNING RPV STRENGTH

SCANNING RPV STRENGTH

