Using. ML to Break the UNNATURALNESS OF NATURE

Why is the Higgs so light?

Why is the Higgs so light?

125 GeV
1 GeV

Why is the Higgs so light?

125 GeV
1 GeV

$m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}$

$$
m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}
$$

$(125 \mathrm{GeV})^{2} \sim 10^{4} \mathrm{GeV}^{2}$

$$
m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}
$$

$(125 \mathrm{GeV})^{2} \sim 10^{4} \mathrm{GeV}^{2}$

$$
m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}
$$

$(125 \mathrm{GeV})^{2} \sim 10^{4} \mathrm{GeV}^{2}$
$\Lambda_{U V}^{2}$
${ }_{\substack{4 \\ 2}}^{m_{P l}}$

$$
m_{H}^{2}=m_{H, \text { bare }}^{2}-\Delta m^{2}
$$

$(125 \mathrm{GeV})^{2} \sim 10^{4} \mathrm{GeV}^{2}$

$$
m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}
$$

$O\left(10^{4}\right)=?-O\left(10^{38}\right)$

$$
m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}
$$

$O\left(10^{4}\right)=?-O\left(10^{38}\right)$

If we take Standard Model TOO SERIOUSLY...

Bare mass and quantum corrections need to cancel 34 decimal places to match observations

34TH DIGIT

OF PI

$\pi \cong 3.14159265358979323846264338327950288419716939937510$...

34TH DIGIT

OF PI

$\pi \cong 3.14159265358979323846264338327950288419716939937510$... If I showed you a "new" constant X,
you'd say this is deeply connected to π
$X \cong 3.14159265358979323846264338327950224312323654386221$...

34TH DIGIT

OF PI

$\pi \cong 3.14159265358979323846264338327950288419716939937510$...
If I showed you a "new" constant X, you'd say this is deeply connected to π
$X \cong 3.14159265358979323846264338327950224312323654386221$...

But the SM says this is truly a coincidence in the Higgs mass calculation!

The Naturalness Problem

"Unnatural" if unrelated numbers
just happen to cancel to
34 decimal places
Why is the Higgs
sector so
Only a problem
because mplanck $^{\gg} \mathbf{m}_{\mathbf{H}}$
unnatural?
i.e. Why is gravity so much
weaker than the other forces?

The (Gauge) Hierarchy Problem

REMEMBER:
Higgs likes to couple to heavy particles
(it's \sim why they're heavy)

REMEMBER:
Higgs likes to couple to heavy particles (it's \sim why they're heavy)

And these couplings give Δm^{2} !
So the top quark
(heaviest SM particle) is the worst offender!

$m_{H}^{2}=m_{H, b g h e}^{2} \Delta m^{2}$

$$
\Delta m^{2}=\sum_{f} \Delta m_{f}^{2}+\sum_{h} \Delta m_{b}^{2}
$$

$$
\begin{aligned}
\Delta m^{2} & =\Delta m_{t}^{2}+\ldots \\
& \sim-c_{t} \Lambda_{U V}^{2}+\ldots
\end{aligned}
$$

To leading order fermions and bosons contribute with opposite sign

Problem: Our issue is that $\Delta \mathrm{m}^{2}$ is getting really big because it's so sensitive to the UV cutoff

$$
\begin{aligned}
\Delta m^{2} & =\Delta m_{t}^{2}+\ldots \\
& \sim-c_{t} \Lambda_{U V}^{2}+\ldots
\end{aligned}
$$

Problem: Our issue is that $\Delta \mathrm{m}^{2}$ is getting really big because it's so sensitive to the UV cutoff

$$
\begin{aligned}
\Delta m^{2} & =\Delta m_{t}^{2}+\ldots \\
& \sim-c_{t} \Lambda_{U V}^{2}+\ldots
\end{aligned}
$$

Possible solution: Make the Higgs mass corrections less sensitive to the UV cutoff...

Problem: Our issue is that $\Delta \mathrm{m}^{2}$ is getting really big because it's so sensitive to the UV cutoff

$$
\begin{aligned}
\Delta m^{2} & =\Delta m_{t}^{2}+\ldots \\
& \sim-c_{t} \Lambda_{U V}^{2}+\ldots
\end{aligned}
$$

$\Delta m_{f}^{2} \sim-\Lambda_{U V}^{2}$
$\Delta m_{b}^{2} \sim+\Lambda_{U V}^{2}$

Possible solution: Make the Higgs mass corrections less sensitive to the UV cutoff...

Problem: Our issue is that Δm^{2} is getting really big because it's so sensitive to the UV cutoff

$$
\begin{aligned}
\Delta m^{2} & =\Delta m_{t}^{2}+\ldots \\
& \sim-c_{t} \Lambda_{U V}^{2}+\ldots
\end{aligned}
$$

Possible solution: Make the Higgs mass corrections less sensitive to the UV cutoff...

$\Delta m_{f}^{2} \sim-\Lambda_{U V}^{2} \Delta m_{b}^{2} \sim+\Lambda_{U V}^{2}$

SUPERSYMMETRY (SUSY):

Fundamental relationship between fermions and bosons

$\Delta m_{f}^{2} \sim-\Lambda_{U V}^{2} \Delta m_{b}^{2} \sim+\Lambda_{U V}^{2}$

SUPERSYMMETRY (SUSY):

Fundamental relationship between fermions and bosons

$\Delta m_{f}^{2} \sim-\Lambda_{U V}^{2} \Delta m_{b}^{2} \sim+\Lambda_{U V}^{2}$

SUPERSYMMETRY (SUSY):

Fundamental relationship between fermions and bosons

$$
s=1 / 2
$$

fermions
SM Electron

SM Quarks $q \leftrightarrow \tilde{q}$ $\mathrm{s}=\boldsymbol{\theta}$ bosons

If every SM particle had a SUSY partner

w/ same quantum numbers (except spin),

$m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}$

$$
\begin{gathered}
\Lambda_{U V}^{2} \\
\uparrow \stackrel{\uparrow}{\mathrm{~T} V})^{2}
\end{gathered}
$$

$$
O\left(10^{4}\right)=?-O\left(10^{6}\right)
$$

$m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}$

$$
O\left(10^{4}\right)=?-O\left(10^{6}\right)
$$

$m_{H}^{2}=m_{H, b a r e}^{2}-\Delta m^{2}$

$$
\begin{aligned}
& \uparrow \\
& 10^{4} \mathrm{GeV}^{2}
\end{aligned}
$$

HINT FROM NATURE
FOR WHERE TO LOOK!

Supersymmetry is pretty super

- TeV-Scale SUSY can solve a lot of problems simultaneously

1 in ${ }^{34}$

- Deflates naturalness problem
- Electroweak Symmetry Breaking just falls out
- Gives hope for gauge coupling unification
- Convenient WIMP DM candidate in the lightest SUSY particle (LSP)
- SUSY is the only mathematically possible extension of the Poincaré group. Why wouldn't it be realized in nature? (HLS)

Supersymmetry is pretty super

- TeV-Scale SUSY can solve_alnt simultaneon-

1. Simple postulate: fermions \leftrightarrow bosons

Supersymmetry is pretty super

- TeV-Scale SUSY can solve_alot simultanen..

1. Simple postulate: fermions \leftrightarrow bosons
2. Write a lagrangian $\mathrm{w} /$ all gauge invariant terms wouldn't it be realized in nature? (HLS)

Supersymmetry is pretty super

- TeV-Scale SUSY can solve_alot simultanen..

1. Simple postulate: fermions \leftrightarrow bosons
2. Solve so many SM wouldn't it be realized in nature? (HLS)

July 2020

Universe is 1-in- Δ fine-tuned If want small fine-tuning, need low masses for new physics!

Universe is 1-in- Δ fine-tuned If want small fine-tuning, need low masses for new physics!

- Are there any opportunities left to discover $\leq T e V-s c a l e$ BSM at the LHC?
- Focus on scenarios where limits might be weak, because of very large BGs

$\exists>10$ yrs of LHC searches

Why haven't we found anything?

$$
\begin{aligned}
& \angle H G \\
& H_{8} \mathrm{Gs}
\end{aligned}
$$

R-PARITY
VIOLATION (R P V)

R-PARITY
 VIOLATION (R P V)

$$
P_{R}=(-1)^{3(B-L)+2 s}
$$

R-PARITY
 VIOLATION (R P V)

Baryon Number

$$
P_{R}=(-1)^{3(B-L)+2 s}
$$

R-PARITY
 VIOLATION (R P V)

Lepton Number

Baryon Number
 $P_{R}=(-1)^{3(B-L)+2 s}$

R-PARITY
 VIOLATION (R P V)

Lepton Number

Baryon Number
 $P_{R}=(-1)^{3(B-L)+2 s}$

R-Parity Conservation

- R-Parity: SUSY-partner-ness

$$
P_{R}=(-1)^{3(B-L)+2 s}
$$

- +1 SM, -1 SUSY partner

R-Parity Conservation

- R-Parity: SUSY-partner-ness

$$
P_{R}=(-1)^{3(B-L)+2 s}
$$

- +1 SM, -1 SUSY partner
- Conserving P_{R} (multiplicatively) \Rightarrow Every vertex contains even number of sparticles
- Sparticle pair production at colliders

- Lightest sparticle (LSP) must be stable (and could be DM)

R-Parity Conservation

- R-Parity: SUSY-partner-ness

$$
P_{R}=(-1)^{3(B-L)+2 s}
$$

- +1 SM, -1 SUSY partner
- Conserving P_{R} (multiplicatively) \Rightarrow Every vertex contains even number of sparticles
- Sparticle pair production at colliders

- Lightest sparticle (LSP) must be stable (and could be DM)
- Notice: If \mathbf{B} and \mathbf{L} are conserved \rightarrow R-parity conserved

R-Parity Conservation

- R-Parity: SUSY-partner-ness

$$
P_{R}=(-1)^{3(B-L)+2 s}
$$

- +1 SM, -1 SUSY partner
- Conserving P_{R} (multiplicatively) \Rightarrow Every vertex contains even number of sparticles
- Sparticle pair production at colliders

- Lightest sparticle (LSP) must be stable (and could be DM)
- Notice: If \mathbf{B} and \mathbf{L} are conserved \rightarrow R-parity conserved
- The vast majority of SUSY searches assume this is conserved

BUT...

1. Simple postulate: fermions \leftrightarrow bosons
2. Solve so many

B UT...

1. Simple postulate: fermions \leftrightarrow bosons
2. Write a lagrangian $\mathrm{w} /$ all gauge invariant terms
3. Solve so many \& SM problems
2.5 Throw away terms we didn't like (in RPC)

Why Conserve R-Parity?

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
- Even if RPV allows LSP decays, can still have gravitino DM or something else

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"
- "B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
- Even if RPV allows LSP decays, can still have gravitino DM or something else
- B and L are only accidental symmetries in $S M$.

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"
-"B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
- Even if RPV allows LSP decays, can still have gravitino DM or something else
- B and L are only accidental symmetries in SM.
- Not fundamental symmetries of the SM. (SM even violates them nonperturbatively)

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"
-"B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
- Even if RPV allows LSP decays, can still have gravitino DM or something else
- B and L are only accidental symmetries in SM.
- Not fundamental symmetries of the SM. (SM even violates them nonperturbatively)
- MSSM violates them unless you explicitly forbid it

Why Conserve R-Parity?

- Why do we talk about R-Parity Conserving SUSY so much?
- "Stable LSP \rightarrow DM"
-"B and L conserved in SM so why shouldn't they be in SUSY?"
- When in fact:
- Even if RPV allows LSP decays, can still have gravitino DM or something else
- B and L are only accidental symmetries in SM.
- Not fundamental symmetries of the SM. (SM even violates them nonperturbatively)
- MSSM violates them unless you explicitly forbid it
- Seems more contrived to manually forbid couplings

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

- General RPV superpotential in MSSM
- Signature-generating machine

$$
P_{R}=(-1)^{3(B-L)+2 s}
$$

- At colliders:
- Allow for single-production of sparticles
- Couplings allow LSP to decay

$$
\begin{aligned}
& \text { R-PARITYVIOLATINGSUSY } \\
& W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}}{\text { LViolating }}
\end{aligned}
$$

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

B Violating

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

Greatly Roll

$$
\begin{aligned}
& \text { weaken Couplings }
\end{aligned}
$$

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

L Violating
 MASSES+MIXING

B-PHYSICS
ANOMALIES

B Violating

Simple Example

Quarks from protons collide

Decay to two quarks (\rightarrow "jets")

- We measure the four-momentum of each jet
- Sum them to get the four-momentum of the new particle
- Relativity tells us how to get the mass $(p \cdot p)=m^{2}$
- Plot this mass and our new physics signals will peak at the mass of the new thing
- Backgrounds steeply falling distribution

Less Simple Example

Each decays to two jets.

- Increasing multiplicity introduces combinatorial issues
- Wrong combinations don't contain peak-y mass variables \rightarrow Make signal harder to find.
- Brute-force \rightarrow Add combinatorial background

Less Simple Example

Each decays to two jets.

Combine correctly, get two peaks at $m(\tilde{t})$

- Increasing multiplicity introduces combinatorial issues
-Wrong combinations don't contain peak-y mass variables \rightarrow Make signal harder to find.
- Brute-force \rightarrow Add combinatorial background

Less Simple Example

Each decays to two jets.

- Increasing multiplicity introduces combinatorial issues
-Wrong combinations don't contain peak-y mass variables \rightarrow Make signal harder to find.
- Brute-force \rightarrow Add combinatorial background

Less Simple Example

Each decays to two jets.

Protons collide

Combine correctly, get two peaks at $m(\tilde{t})$

Combine incorrectly, and get no sharp peaks

- Increasing multiplicity introduces combinatorial issues
-Wrong combinations don't contain peak-y mass variables \rightarrow Make signal harder to find.
- Brute-force \rightarrow Add combinatorial background

Less Simple Example

- Here - one of three possible configurations is correct
- \rightarrow 20日\% combinatoric background!
- \exists Prob of extra ~uncorrelated jets produced in the same event
- Even harder!

Time
$\binom{4}{2} / 2=3$

Combinatorics start to annoy us but aren't the end of the world

"Classical" Combinatorial Soln's

"Classical" Combinatorial Soln's

" ΔR^{Σ} Minimization"
$\min _{\text {combs }}\left\{\sum \Delta R_{\text {pair }}+C\right\}$

"Classical" Combinatorial Soln's

" ΔR^{Σ} Minimization"
$\underset{\text { combs }}{\min }\left\{\sum \Delta R_{\text {pair }}+C\right\}$
"Mass Asymmetry Minimization"

$$
\min _{\text {combs }}\left\{\frac{\left|m_{1}-m_{2}\right|}{m_{1}-m_{2}}\right\}
$$

"Classical" Combinatorial Sold's

" ΔR^{Σ} Minimization"
$\min _{\min \{ }^{\text {ma nd }}\left\{\sum \Delta R_{\text {mitt }}+c\right\}$
"Mass Asymmetry Minimization"
$\min _{\text {combs }}\left\{\frac{\left|m_{1}-m_{2}\right|}{m_{1}-m_{2}}\right\}$

"CLASSICAL" 2×2

- Example of traditional analysis technique
- Use ΔR^{Σ} to try to get peaking mass

- Do a bump hunt in this mass

"CLASSICAL" 2×2

"CLASSICAL" 2×2

- We can do this search but...
- Sensitivity pretty bad!
- Limits run out at $m(\tilde{t}) \approx 400 \mathrm{GeV}$
- If stop just out of reach, very natural theory
- [i.e. maybe RPV couplings have prevented the discovery of a natural BSM]

"CLASSICAL" 2×2

- But in order to get small ΔR^{Σ} values, stops need to be highly boosted
- Low signal acceptance!
- Throwing away a lot of the signal...
- Can we do better?
- Can we scale this to larger multiplicities?

But it could easily be that new particles don't produce 4-jet events. The new particles might like to decay to many more jets!

$$
\begin{gathered}
\binom{10}{5} / 2=126 \\
\binom{5}{3}=10
\end{gathered}
$$

- Focus on " 18 -jet", " 2×5-jet" signal
- 126 ways to find the 5 -jet peak (\tilde{g})
- + each contains extra 10 configs to find intermediate peak ($\tilde{\chi}$)

For the one "correct" view of this event, there are >12k "wrong" views

- But lots of kinematic information exists shouldn't need to brute force problem...
- Yes, but have 10 four-vectors \rightarrow Info in 10x4=40D feature space!
- Can't construct useful variables by hand...

ML?

- Many HEP ML applications say "sig looks like BG. Let's try a DNN."
- Always remember: ML \neq Magic. Just a lot of Linear Alg
- This is different: Sig and BG look very different.
- (It's just that they look different in 40D)
- It's not that we have little information
- We have way too much information!!! Large dim feature space.

In fact: LHC limits are pretty bad out here

> In fact: LHC limits are pretty bad out here

BACK TO 2×2

- Let's play with some Neural Nets to solve (relatively) simple problem
- What input structure?
- Some HEP applications use full 4-momenta:

Input $=\left\{E_{i}, p_{x i}, p_{y i}, p_{z i}\right\}$

FCN Describing inputs in orthogonal coordinate system $\left\{E, p_{x}, p_{y}, p_{z}\right\}$

Makes it easy for NN to sum inputs But NN needs to learn how to calculate masses!

BACK to 2×2

$$
\text { Input }=\left\{m_{i}, p_{T i}, \eta_{i}, \phi_{i}\right\}
$$

Input $=\left\{E_{i v e r}, p_{y i}, p_{z i}\right\}$
Others might hand it $\left\{m, p_{T}, \eta, \phi\right\}$

Output
NN is told about masses and angles
But it then needs to learn how to combine vectors!

NN w/ LORENTZ LAYER

- Construct a NN layer that knows about relativity!
- Input four-momenta \rightarrow Knows how to do four-vector addition, calculate mass!
- Don't need a network to learn physics we already know about!
- NN is optimizing in physics basis
- Send into "traditional" feedforward neural net to reduce dimensionality of problem

NN w/ LORENTZ LAYER

CANNONBALL:

Combinatoric Artificial NN ON (BAckronym) Lorentz Layer

- Output not a single score.
- Outputs interpretation of event to choose the "best" combination for us
- Then traditional analysis methods come in!
- [Including systematics]

- ΔR^{Σ} minimization does terribly at getting the right pairing!
- CANNONBALL performs ~30x better at large mass
- And is fairly robust to mismeasurement of jets (ϵ)
- Dкц: A measure of how much two PDFs differ
- How well each method reconstructs full four-vec of the heavy resonances (i.e. getting the right comb. answer)
- CANNONBALL's big advantage is at low stop $\mathbf{p}_{\mathbf{T}}$

$$
\begin{aligned}
\mathcal{D}_{\mathrm{KL}}(T \| P) & =\int T \log \left(\frac{T}{P}\right) d p^{\mu} \\
& =\sum_{p_{\mathrm{T}} \text { bins }} \sum_{\eta, \phi, \mathrm{m} \text { bins }} T \log \left(\frac{T}{P}\right) \\
& =\sum_{p_{\mathrm{T}} \text { bins }} \mathcal{D}_{\mathrm{KL}}^{\eta, \phi, \mathrm{m}}\left(T \| P, p_{\mathrm{T}}\right)
\end{aligned}
$$

- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
- Ongoing work

- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
- Ongoing work

```
\DeltaR}\mp@subsup{}{}{\Sigma}\mathrm{ does terribly
unless boosted.
    To see peak,
throw away low pt
```


- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
- Ongoing work

```
\DeltaR}\mp@subsup{}{}{\Sigma}\mathrm{ does terribly
unless boosted.
    To see peak,
throw away low pt
```


Mass Asymmetry Min

Large off-peak contributions...

- Better comb solns give peak-ier mass distributions
- Easier to distinguish from QCD+comb BGs
- This should translate to more search sensitivity.
- Ongoing work

```
\DeltaR}\mp@subsup{R}{}{\Sigma}\mathrm{ does terribly
unless boosted.
To see peak, throw away low pt
```

Mass Asymmetry Min
Large off-peak contributions...

A Badea, W Fawcett, J Huth, TJ Khoo, R Poggi, LL - arXiv:2201.02205

I
$2 \times I$
2×2

I
I
$2 \times 4 \quad 2 \times 5$

Does this approach scale?

- Attack large dim feature spaces
- If we think in this way, realize lots of room for low mass new particles from natural theories!
- Hidden under the SM BGs and combinatorial BGs created by our lack of 40D tools
- Not using ML to eke out a little more exclusion power
- Attack large dim feature spaces
- If we think in this way, realize lots of room for low mass new particles from natural theories!
- Hidden under the SM BGs and combinatorial BGs created by our lack of 40D tools
- Not using ML to eke out a little more exclusion power

Trying to enable searches that are really (really) hard that might actually DISCOVER something.

Thanks for your attention!

$$
\begin{aligned}
& \text { R-PARITYVIOLATINGSUSY } \\
& W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}}{\text { LViolating }}
\end{aligned}
$$

R-Parity Violating SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

L Violating
B Violating

- Low energy/Electroweak constraints
- Proton lifetime limits set very strict bounds on simultaneous L- and B-violation here (for light flavor couplings)
- Z boson line shape measurements set some limits on L-violation in RPV
- Biggest constraints on (light flavor) $\lambda^{\prime \prime}$ come from \mathbf{n}-nbar oscillation limits
- $n E D M \ll 1$ also constrains certain $\lambda^{\prime \prime}$

- Using pyTorch
- Training on NVIDIA Quadro RTX w 8GB RAM using CUDA 11.5
- Enforcing mass invariance by mixing masses (democratically) in training sample
- 180 k events $\times 20$ masses
- Loss fn: Binary cross entropy, minimized using Adam.
- Learning rate of 1e-3 - playing with dynamic learning rate
- Batch size of 10 k
- 30 combination layer nodes
- 3 hidden layers in head (20θ nodes)

$m_{H}^{2}=m_{H, b a r e}^{2}+\Delta m_{S M}^{2}+\Delta m_{B S M}^{2}$

$\begin{array}{r} q=+2 / 3 \\ s=1 / 2 \end{array}$	$u \mathrm{I}$	W	
$\begin{array}{r} -1 / 3 \\ 1 / 2 \end{array}$	$d \mathrm{l}_{1} \mathrm{~s} \mathrm{I}_{1} \mathrm{l}$	Z	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
0 $1 / 2$	$\nu_{e}{ }_{\text {I }}^{\text {I }} \nu_{\mu}{ }_{\text {I }}^{\text {I }}$	γ	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
-1 $1 / 2$	$e \quad$ I μ । τ	g	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
$+2 / 3$ 0	$\tilde{u}_{R, L} \mathrm{c}_{-} \tilde{c}_{R, L} \mathrm{c}_{-} \tilde{t}_{1,2}$	$\tilde{\chi}_{1}^{ \pm}$	± 1 $1 / 2$
$-1 / 3$ 0	$\tilde{d}_{R, L}$ $\widetilde{s}_{R, L}$ $\tilde{b}_{1,2}$	$\tilde{\chi}_{2}^{ \pm}$	$\begin{aligned} & \pm 1 \\ & 1 / 2 \end{aligned}$
0	$\tilde{\nu}_{e}{\underset{-}{:}}_{\tilde{\nu}_{\mu}}^{\tilde{\nu}_{-}} \tilde{\nu}_{\tau}$	$\widetilde{\chi}_{1-4}^{0}$	0 $1 / 2$
-1 0	$\tilde{e}_{R, L} \quad \mid \tilde{\mu}_{R, L}$: $\tilde{\tau}_{1,2}$	\tilde{g}	0 $1 / 2$
0 0	h^{0} । A^{0} । H^{0}	$H^{ \pm}$	± 1 0

What if we say each particle has a partner ("sparticle") that cancels off corrections

SUPERSYMMETRY

(SUSY)

> R-PARITY VIOLATING SUSY

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

L Violating
B Violating

- $\lambda^{\prime \prime}$ gives rise to all-hadronic final states at LHC
- B-Violating SUSY could easily hide at LHC

- Papers have argued for low-level calo images \rightarrow CNN: 1805.10730 1711.03573
- Could work, but overly complicates...
- Most of the detector is empty! Inefficient!
- Throw away all jet physics (*) and tries to rediscover it.
- That's not the problem I'm interested in solving...

50x50 x 3 layers ~ 7.5k Dimensions!
(*) The work it takes to go from raw detector info to calibrated four-vector

Instead, use huge jet physics industry...

Distill calo inputs to wellunderstood, calibrated 4-vectors.

Problem "only" 40D

Hand those 4-vectors to a NN
\rightarrow Huge head start

RPV Signal

RPV MultiJet

- Look in the tails, see no
 disagreement with background hypothesis
- Limits up to $\sim 1.9 \mathrm{TeV}$ in gluino mass
- (But also as weak as $\sim 1 \mathrm{TeV}$!)

RPV MultiJet

- Look in the tails, see no
 disagreement with background hypothesis
- Limits up to $\sim 1.9 \mathrm{TeV}$ in gluino mass
- (But also as weak as $\sim 1 \mathrm{TeV}$!)

COULD BE A GLUINO SITTING THERE AT 1 TEV

THE LHC DREAM

(JUST HAS THIS RPV TERM ON!)

- (But also as weak as $\sim 1 \mathrm{TeV}$!)

We were A Bit OPTIMISTIC...

ATLAS NOTE

July 23, 2010

Prospects for Supersymmetry discovery
based on inclusive searches at a 7 TeV centre-of-mass energy with the ATLAS detector

Proton decay

$$
W_{R P V}=\mu_{i} H_{u} L_{i}+\frac{1}{2} \lambda_{i j k} L_{i} L_{j} E_{k}+\lambda_{i j k}^{\prime} L_{i} Q_{j} D_{k}+\frac{1}{2} \lambda_{i j k}^{\prime \prime} U_{i} D_{j} D_{k}
$$

L Violating
B Violating

$$
\Gamma_{p \rightarrow e^{+} \pi^{0}} \sim m_{\text {proton }}^{5} \sum_{i=2,3}\left|\lambda^{\prime 11 i} \lambda^{\prime \prime 11 i}\right|^{2} / m_{\widetilde{d}_{i}}^{4}
$$

ScAnNING RPV
 Strength

1

Moderate coupling: Diagrams still dominated by gauge couplings

LSP at end of RPC decay chain then decays
(potentially displaced)

$\lambda "$
Large coupling: Direct decays if RPV coupling dominates over RPC vertices

Scanning RPV Strength

IS THERE ANY REGION OF THIS SIGNATURE SPACE WE HAVEN'T COVERED YET?

Diagrams still dominated by
gauge couplings Direct decays if RPV coupling dominates over RPC vertices

ScAnNiNG RPV Strength

Scanning RPV Strength

Scanning RPV Strength

Scanning RPV Strength

RPV SURVEY

But not looking great...

Scanning RPV Strength

Reinterpret many searches for varying lifetime / BRs

Properly accounting for:
Interplay between RPV and gauge couplings
Even resonant sparticle production

Scanning RPV Strength

Reinterpret many searches for varying lifetime / BRs

Properly accounting for:
Interplay between RPV and gauge couplings
Even resonant sparticle production

