Timing Detector R&D For The CMS Experiment At KU

Andrés Abreu University Of Kansas KU PALOOZA 2022 Saturday, March 26 2022

The CMS detector

Andrés Abreu

- One of the four main particle detectors at the Large Hadron Collider in Geneva, Switzerland.
- Consists of multiple subdetectors arranged in layers like an onion.
- Higgs boson discovery achieved in 2012.
- Complete overhaul coming soon with addition of new technologies:
 - New timing detector

KU PALOOZA 2022

Why Timing?

- No current dedicated component for timing at the CMS detector.
- Essential for handling the conditions of the new and improved LHC (HL-LHC).
- Increased potential for finding Physics.

Andrés Abreu

new

Saturday, March 26 2022

KU PALOOZA 2022

LGAD

Andrés Abreu

KU PALOOZA 2022

- New detector in the CMS Phase-2 Upgrade (HL-LHC era).
- Maintain same performance despite increased amount of collisions.
- Two main components:
 - Endcap Timing Layer (ETL) Low Gain Avalanche Detectors (LGADs).
 - Barrel Timing Layer (BTL) LYSO crystals and Silicon Photomultipliers (SiPMs).

ETL Sensor Requirements

- LGAD Requirements:
 - ~100% triggering efficiency across all sensitive elements.
 - Sufficient radiation tolerance to ensure consistent performance.
 - Maintain highly granular timing resolution throughout its lifetime (~30 ps).

LGAD Testing at KU

Probe

Station

Andrés Abreu

KU PALOOZA 2022

Several ongoing LGAD test Ο projects at KU:

- Probe station (IV measurements, capacitance, etc.)
- Mechanical tests (sheer and compression)
- Automated microscope for highresolution images
- Test Platform system (time resolution measurement)

Test Platform System

Test Platform System

Andrés Abreu

- LGAD testing system with movable radioactive Sr₉₀ source.
- o Platform designed with magnetic **spectrometer** for selecting electrons with energy > 1MeV.
- Mobility over an x-y grid using electric motors and Arduino.
- **Reference sensor** to obtain time resolution.
- Readout data with **8-ch oscilloscope**.
- Plans to fully automate the testing procedure \odot in the future!

KU PALOOZA 2022

Srgo Radiation Source

- Test sensors with β radiation
- Inside enclosure with pinhole
- Can be opened/closed with knob

Andrés Abreu

Open/Close source Opening

Pinhole opening

KU PALOOZA 2022

Magnetic Spectrometer

Andrés Abreu

- Immediately underneath source pinhole opening.
- Used for selecting electrons with higher energies.
- Can be tuned depending on needs:
 - Magnetic field strength
 - Separation between magnets
 - Angle of source

KU PALOOZA 2022

Saturday, March 26 2022

9

Mobility Over X-Y Grid

Arduino Nano Every

Andrés Abreu

- Spectrometer with source can be moved over device under test (DUT) with 2 stepper motors (X-Y plane).
- Controlled using serial commands with Arduino nano.
- Can be used to test multiple LGADs in a relatively short amount of time.
- Plans for having testing procedure fully automated.

KU PALOOZA 2022

Reference Sensor

Andrés Abreu

- Total of 8 working sensors connected to readout channels.
- The read-out board has a cutout under the sensor to reduce material and prevent stopping electrons.
- Attached to bottom of source holder.
- Necessary for time resolution measurements.
- Currently testing which of the 8 sensors gives the best performance.

KU PALOOZA 2022

Data Acquisition

- 8-channel Oscilloscope:
 - Used to control test platform motors.
 - Acquires and saves data for up to 8 sensors simultaneously.
 - Controlled with Python and stores data in HDF5 format.
 - Data analyzed using our own framework.

Saturday, March 26 2022

KU PALOOZA 2022

Analysis Framework

#include "PulseVariation.h"

```
//Constructors
```

```
PulseVariation::PulseVariation(const type){}
vulseVariation::PulseVariation(const PulseList& pulseList, const type){
```

collectionSize_ = pulseList.size();

PulseVariation::PulseVariation(const std::vector<TH1D> histCollection, const std::vector<double> timeAxis){

```
collectionSize_ = timeAxis.size();
timeAxis_ = timeAxis;
histCollection_ = histCollection;
collectionMean_ = GetMeanPulse();
```

//Destructor PulseVariation::~PulseVariation(){}

//public methods std::vector<double> PulseVariation::GetMeanPulse() const{

```
int size = histCollection_.size();
std::vector<double> meanPulse;
```

```
for(int h = 0; h < size; h++)
  meanPulse.push_back(histCollection_[h].GetMean());
```

return meanPulse;

Andrés Abreu

KU PALOOZA 2022

- Written mostly on C++ \odot with some python scripts.
- Designed for analysis on \odot single pulses and groups of pulses.
- Freely available on <u>Github</u>.
- Work-in-progress.

Trigger Rate

Andrés Abreu

KU PALOOZA 2022

- First test with the source:
 - Scan over test sensor to find the platform highest rate in terms of position.
- Shape of profile depends on shape of opening.

Amplitude and Time Distribution

Andrés Abreu

KU PALOOZA 2022

- Histograms made with the root library.
- Made to verify expected sensor behavior.
- Can be used to remove events that are just noise.
- be determined at Jar individual position.

Pulse Variation

- We can look at variations exhibited by pulses across many different events:
 - Certain parts of the pulse vary more than others.
 - Same is true for the cumulative distribution function (CDF) of the pulses.

Saturday, March 26 2022

KU PALOOZA 2022

Event Reconstruction and Timing Resolution

Andrés Abreu

- Obtain amplitude and Δt from each event:
 - Fit and interpolation used to find time value of signal max.
 - Difference between LGAD and reference peak mean.
- MIP amplitude fit to obtain peak (MPV).
- Δt distribution fit with Gaussian to obtain width (time resolution is σ_t).

KU PALOOZA 2022

Conclusion

- for huge particle accelerators).
- Can test many sensors in a short amount of time. \odot
- Lots of progress but still a lot of work to be done:
 - Plans for fully automated system.
 - Installation of cooling system for testing irradiated sensors.
 - Evolving analysis framework.

Andrés Abreu

• Test platform will allow us to take large amounts of data locally at KU (no need

